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Abstract— Van Emde Boas trees show an asymptotic query
complexity surpassing the performance of traditional data struc-
ture for performing search queries in large data sets. However,
their implementation and large constant overheads prohibit their
widespread use. In this work, we ask, whether van Emde Boas
trees are viable on the GPU. We presents a novel algorithm to
construct a van Emde Boas tree utilizing the parallel compute
power and memory bandwidth of modern GPUs. By analyzing
the structure of a sorted data set, our method is able to build
a van Emde Boas tree efficiently in parallel with little thread
synchronization. We compare querying data using a van Emde
Boas tree and binary search on the GPU and show that for
very large data sets, the van Emde Boas tree outperforms a
binary search by up to 1.2x while similarly increasing space
requirements. Overall, we confirm that van Emde Boas trees are
viable for certain scenarios on the GPU.

Index Terms— van Emde Boas tree, vEB tree, GPU, parallel
construction, CUDA, GPU querying

I. INTRODUCTION

Searching data sets efficiently has always been of interest
for data processing as it is one of the key operations in many
fields. Binary search [1], [2] is probably the best known search
algorithm. It is also known as interval search, as at each
iteration the search interval is halved until the desired element
is found resulting in a search time bound of O(log2(n)). Over
the years many different search algorithms have been proposed
to improve upon this search bound.

One of those proposed structures is the van Emde Boas
(vEB) tree [3]–[5] structure which requires one constraint on
the data set. The full data set must exist within the range
U = [0, 22

d −1]. This allows for an interval search on the bit-
representation of a value by splitting it into an upper and lower
half at each iteration step. Therefore, the vEB tree performs
searches in O(log2(log2(|U |))) time. When working with a
32 bit environment, a vEB tree needs at most 5 iterations for
querying a single value from the structure.

A big drawback of vEB trees is that the original construction
algorithm foresees that each element is iteratively inserted into
an existing tree, starting from an empty tree. The insertion
process expands the space needed for the tree dynamically as
new elements are inserted. The dynamic memory allocations
and serial nature of the construction make it not a good fit for
a highly parallel computing device like a modern GPU.

Instead, we propose a highly parallel construction algorithm
that works on a sorted data set, which allows for parallel
construction without the use of dynamic allocation and avoids
synchronization primitives in a parallel compute environment.
Our main focus lies on evaluating the query performance of
vEB tress on the GPU. While the theoretical bounds clearly

point towards the efficiency of vEB trees, they are traditionally
associated with high constant factors and thus see less use
in practice. With our work, we try to answer the question,
whther vEB trees are viable on the GPU for general data
query. To this end, we compare the efficiency of our vEB
tree implementation with binary search across different data
distributions.

II. RELATED WORK

When constructing a vEB tree using the traditional insertion
algorithm, the data inserted is implicitly sorted based on
the divide and conquer method. Similar sorting methods like
quicksort [6] and mergesort [7] employ divide and conquer,
but are bound with O(n · log2(n)) in their sorting time as they
operate on the length of the data set.

A method with similar query time characteristics is the
Tango Tree [8]. It is an online algorithm which achieves a
competitive ratio of O(log2(log2(n))) for queries. The Tango
Tree operates in a similar way to the Splay Tree [9], in that
it has a preferred path, which speeds up queries to elements
that have been queried prior. Additionally, red-black trees [10]
represent the preferred paths as auxiliary trees, only resulting
in an overhead of O(log2(log2(n))) bits.

While the GPU is traditionally not well suited for hierarchi-
cal data, building spatial data structures, especially motivated
by hardware ray-tracing showed that building trees on top of
sorted (multi-dimensional) arrays or binned data directly on
the GPU is a viable option [11]–[18]. When building and
evaluating hierarchical data structures on the GPU, task-based
models may even allow for dynamic adjustments [19]–[23].
Further domains with specialized tree structures on the GPU
include classification trees [24], decision trees [25], and min-
max trees [26]. Querying for k-nearest neighbors can also be
done efficiently on top of hierarchical structures on the GPU
[27], [28]. Recently, there has been a move towards more
efficient general data structure implementations on the GPU,
including hash tables [29], dynamic dictionaries [30], R-trees
[31] and B-trees [32]. In this work, we for the first time look
at vEB tress on the GPU.

A use case for vEB trees are range queries. In [33] vEB
trees are used in multiple areas to find the locations of points
for several dimensions. Furthermore, they are popular in areas
where fast query times are beneficial, like network routing
[34], [35]. For smaller universe sizes U the query times have
been optimized to a theoretical O(1) using pipelining [36].
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Fig. 1. Basic structure of a vEB cluster c. Each cluster stores the minimum
min and maximum max value as well as an array of all clusters smaller
clusters. c has a fixed word length w. All contained clusters within c have
word length w
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Fig. 2. Basic structure of a vEB cluster c with word length w = 8 shown on
data. The summary cluster cs is marked in green. The smaller cluster c1 to
c3 that are contained in c are marked in orange. Blue marks the first element
min and last element max.

III. METHOD

We start by discussing the basic structure of the vEB tree,
the query functions, and how to insert new elements. We then
analyze the time and space complexities of vEB trees, before
presenting our novel GPU algorithm for vEB trees.

A. van Emde Boas tree

The vEB tree uses divide and conquer as a method to allow
searches within a given data set. The vEB tree splits values
on a bit level into an upper and a lower half and uses these
halves to search on the word length recursively.

1) Structure: The vEB tree nodes are called clusters. A
cluster operates on a specific word length, in other words
bit-count, w. The word length for the top-level cluster is
always log2(U), which is the bit-count needed to represent the
maximum value in the universe U . Each level in the tree halves
the word length, which allows for a depth up to log2(log2(U)).

Each cluster c contains its minimum and maximum value, its
word length w, as well as a list of children clusters c1...cN , and
a summary cluster cs (see Fig. 1). The children clusters form
the nodes in the next level of the tree. In Fig. 2, the structure of
a cluster is visualized. Values are placed into clusters c1...cN
based on the upper half bits. This gives an upper bound on
possible clusters for a given word length w of N = 2

w
2 . The

lower half of a value is recursively passed to the children
cluster which halves the word length until a word length of
one is reached. The summary cluster stores information about
non empty clusters and is used to find the next non empty
cluster for a given value during query operations. The process
of grouping values into clusters based on the upper half is
shown in Fig. 2.

2) Helper functions: To explain the process of querying
elements in the tree, we define two functions high and low,
which for each value x and a given word length wc compute
the respective upper and lower half:

Input : Query value x
Output: Predecessor for query value x

1 predecessor (x);
2 if max 6= NULL and x > max then
3 return max
4 end
5 if x ≤ min then
6 return NULL
7 end
8 if wordlength = 1 then
9 return 0

10 end
11 highx← high(x);
12 lowx← low(x);
13 c← clusters[highx];
14 if c 6= NULL and lowx > c.min then
15 lowx← c.predecessor(lowx);
16 else
17 highx← cs.predecessor(highx);
18 if highx = NULL and x > min then
19 return min
20 end
21 lowx← clusters[highx].max;
22 end
23 return concat(highx, lowx)

Algorithm 1: Recursive predecessor search within vEB
trees.
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Note that ffffffff16 sinmply defines a 32 bit value with all
bits being set. For different word lengths it needs adjustment.
The upper half is generally denoted as high(x) and the lower
half as low(x) with regards to the current clusters word length
which is usually omitted when using this notation.

3) Query: Queries for vEB trees are exists(·),
predecessor(·), and successor(·). All of these query
functions are variations of each other. Algorithm 1 describes
the recursive predecessor search starting at the biggest cluster.

The check on line 2 ensures that should a maximum value
exist and the query is bigger than it, the query has been
finished. Line 5 catches the case that a value smaller than
the existing minimum of a given cluster is queried. Line 8
serves as recursion end. It returns 0 as lower values would
be captured with line 5. The query for the subsequent smaller
cluster happens on line 13. Should the cluster c exist in the
list of clusters and the lowx part be bigger than that clusters
minimum then the algorithm is bound to find the predecessor
of the query within c. On the contrary, should c not exist, then
the summary cluster cs is tasked with finding the next smaller
cluster and taking its max value. The computed highx and
lowx values are concatenated on a bit level based on the word
length of the current cluster and get returned to the caller.

Equivalently, the successor(·) function operates by check-
ing against maxima instead of minima and vice versa.
To implement exists(·) it is possible to use x ==



Input: Value to insert x
1 insert (x);
2 if min = NULL then
3 min = x;
4 max = x;
5 return
6 end
7 if x < min then
8 temp← x;
9 x← min;

10 min← temp;
11 end
12 highx = high(x);
13 lowx = low(x);
14 if wordlength > 1 then
15 if clusters[highx] = NULL then
16 create new cluster at clusters[highx];
17 end
18 if clusters[highx].min = NULL then
19 if cs == NULL then
20 create cs;
21 end
22 cs.insert(highx);
23 end
24 clusters[highx].insert(lowx);
25 end
26 if x > max then
27 max = x;
28 end

Algorithm 2: Insertion into an existing vEB tree.

c.predecessor(x+ 1) or x == c.successor(x− 1) since the
vEB tree operates on a discrete domain where the aforemen-
tioned conditions hold true.

4) Insert: The original construction of vEB trees happens
one element at a time. The pseudo code for the insertion is
shown in 2. Newly created clusters always have half of the
word length of the creating cluster. Furthermore, new clusters
have their min and max value set to NULL. The minimum
value of each cluster is stored in the min field of each cluster
object and does not get propagated further down.

By swapping out the old min value with the new, smaller
value x on line 7, it is guaranteed that the previously stored
values gets propagated correctly. Similar to 1, the recursion
ends as soon as wordlength = 1 or a cluster is empty. Note:
should line 18 be true then the insert call at line 24 is constant
as the check from line 2 returns in constant time and therefore
maintains linear recursion.

B. Complexity

1) Domain: The discrete domain for the vEB trees is
defined as

U =
[
0, 22

d

− 1
]
: d ∈ N (3)

as otherwise it would be impossible to search on the word
length. 2d is the maximum word length possible, therefore if
d = 5 the maximum word length is equal to 32 bits. The value
d can be seen as the maximum depth for a vEB tree.

2) Build time: The time complexity of building a vEB tree
with n elements and domain U is defined as:

O (n · log2 (log2 (U))) . (4)

This is because each recursive call to insert(·) has the word
length halved until it arrives at wordlength = 1. A vEB tree
with d = 5 describes the 32 bit domain and needs at most 5
recursive calls to insert(·).

3) Query time: The time complexity of searching a vEB
tree with n elements and domain U is defined as:

O (log2 (log2 (U))) . (5)

Note that the query time is not dependent on the number of
elements but rather on the size of the domain. This is because
the query is happening on the word length.

4) Space: The space requirements for vEB trees using a
naive approach is O(U) with creating every possible cluster
beforehand but not storing anything in them until an insert
for a value x is issued. Algorithm 2 already circumvents this
by only creating clusters when they are needed. Furthermore,
should only one value be stored within a cluster the fields min
and max are utilized to prevent further creation of unnecessary
clusters. Using this approach the space complexity of vEB
trees is defined as

O (n · log2 (log2 (U))) , (6)

because each value can at most generate log2 (log2 (U))
clusters when it is inserted using Algorithm 2. Further im-
provements are made by storing the entries that have a word
length of 4 in a small bit map field as it only requires 16 bits
(uint16). This is the biggest bit field that is sensible as the
next bigger word length would be 8 which would require a
28 = 256 bit field which is not efficient for querying whereas
querying a small bit field can be done using built-in processor
intrinsics.

The space requirements can be further improved by not
allocating the space required for all smaller clusters which can
reside within a cluster. For example, a cluster with word length
32 would need to allocate an array of 216 clusters regardless
of actually needing that much space. The usage of hash tables
provide the same functionality with O(1) access time while
cutting down on unnecessary space allocation.

C. CUDA Implementation

When building a vEB tree on the GPU it is important
for efficiency to avoid locking and using atomic operations
when possible as they come with a big time overhead. The
original algorithm 2 dictates elements to be inserted one at
a time which does not lend itself to parallelization. Thus,
our algorithm operates on the whole input set in parallel, i.e,
assumes all data is present. A change of the data requires a
rebuild—a strategy common across tree builders for raytracing
on the GPU. The space requirement and cluster hierarchy is
computed as a first step to avoid costly dynamic memory
allocation during the construction of the vEB tree.



1) Sorting: For a given data set D ⊆ U of data we use radix
sort [37], [38] provided by the cub library [39] to prepare the
data. This step is crucial as the following steps require the
assumption of sorted ascending data.

2) Computing first-elements: Computing the number of
clusters, a value xn from the set D is going to generate, is
necessary to allocate the space for clusters in a single call. The
first-element (the minimum) of each cluster is not propagated
into any smaller cluster or summary cluster. Therefore, the first
element is the indicator of the start of a cluster. Identifying the
amount of first-elements each value xn is going to generate,
as well as the starting bit position s (from the left) and word
length w is important to compute the space requirement and
structure of the tree ahead of time.

The first-elements, which are are shown in Fig. 3, are
identified by a two-step process. The first step is to apply
fe(·) to the whole input set, where

fe(xn, s, w) =

{
true, if xn−1[0 : s) 6= xn[0 : s)

false, else.
(7)

xn is the value that is checked, s is the starting position of
a cluster in bits from the left, w is the word length of the
cluster. The notation xn[0 : s) implies taking the bits from
bit position 0 to s, read from the left. For example in Fig.
3: x3[0 : 8) = 1100 0001. Eq. (7) compares the bits to
the left of the start of a potential cluster. New clusters can
only start where the high(xn) is different from the previous
value xn−1(see Fig. 2). This only holds because we operate
on a sorted set of data. The values for s and w should not
be arbitrarily chosen. The word length w is restrained to
all possible cluster word-lengths. The starting position s is
constrained to be a multiple of the value w and to be below the
maximum word length. While brute forcing this check would
work for all combinations of w and s, it is advised to start
with the largest word length possible and start halving it. This
allows to eliminate combinations of w and s for a given xn:
if a first element has been found (marked in blue in Fig. 2),
no other first-elements for xn can reside within that section of
bits. Therefore, all smaller combinations which overlap with
a first-element region can be ignored and be assumed as false.

It is also important to note that for element x0 the condition
fe(x0, 0, 32) is set to true as it is always the first element of
the whole vEB tree.

3) Propagation of first-elements: Step two is to identify the
summary clusters. Every cluster has a summary cluster, if it
has two or more different values in it. In case there is only
a single value in the cluster it is directly stored in the min
field and no sub-clusters are created. The summary clusters cs
starts at the first value that is different from the first-element
(minimum) of cluster c. In this case, two clusters are generated,
the summary cluster and the first cluster c1. Here we use the
already identified first elements from the first step to propagate
downwards.

For a cluster c at value xn with starting bit position s and
word length w, it compares the first-element of c with the

1100 0001 0100 0110 1110 0010 0010 1010
1100 0001 0101 1011 0100 1011 1100 0111
1100 0001 1001 1110 0100 0101 0011 1000
1100 0001 1010 0010 0011 0100 0101 0101
1100 0001 1010 1000 0010 0100 0001 0100
1100 0001 1100 0000 1111 1100 0111 0110
1100 0001 1101 0010 1001 0110 1100 1001
1100 0001 1101 0111 0000 1011 1011 1010
1100 0001 1101 1001 0000 1100 0111 0101
1100 0001 1101 1100 1010 0100 0100 0110
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Fig. 3. Each blue box marks the first-element and therefore the start of a
new cluster.
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Fig. 4. Encoding of the first-elements as bits for Fig. 3. Each set bit represents
a starting position s and a word length w

values below until it finds a k where the condition no longer
holds true. Upon finding k the new summary cluster’s first-
element is identified as well as the first cluster which resides
within cluster c. Note that in Fig. 3 below the blue box for
fe(x2, 0, 8) no summary cluster is generated, as all values
below are equal to the first-element in the scope of that cluster.
Additionally fe(x2, 0, 8) and fe(x2, 8, 8) are products of the
propagation from fe(x1, 0, 16) as x1[0, 16) 6= x2[0, 16).

4) Encoding for first-elements: To encode the identified
first-elements for each element xn a small bit field is used.
Fig. 4 shows the same example as presented in Fig. 3 but
shows the bit field for each value. The bit field represents all
possible combinations of w and s and needs to be adjusted
based on the domain size. In the example given in Fig. 4, x0

has a first-element at starting position s = 0 with word length
w = 32, x1 has two first-elements, one s = 0 and w = 16 and
one with s = 16 and w = 16, etc. The starting positions from
here on out can be inferred by the position of the bit set in
this bit field by multiplying the position with the word length.

After the two steps we have the finished structure as shown
in Fig. 3 and its encoding in Fig. 4.

An additional benefit of this encoding is that the number
of clusters for each value xn is determined by the number
of set bits in each bit field. To retrieve the count we can
use the popcount intrinsic, which is present on all modern
architectures. From this we can see that x0 creates 1 cluster,
x1 creates 2 clusters, x2 creates 3 clusters, and so on.

5) Cluster sizes: Using the first-elements bit field, we know
how many clusters each value xn is generating but it is
unknown how many smaller clusters each generated cluster
c contains. Using a search that finds the smallest k that fulfills

xn[0 : s) 6= xn+k[0 : s) (8)



yields the number of smaller clusters c1, ..., cN that are con-
tained as well as max for c. Each cluster c with word length
w can store up to 2

w
2 smaller clusters. Therefore, the number

of clusters N has an upper bound defined by

N = min(k, 2
w
2 ). (9)

6) Hash tables: Always storing the maximum possible
amount of smaller clusters in an array unnecessarily increases
the spatial requirements. We utilize hash tables with universal
hashing [40], [41] to greatly reduce the space needed. Within
those hash tables we store pointers to all existing smaller
clusters c1, ..., cN . Since hash tables use a hashing algorithm
that can lead to hash collisions, a fill ratio for the hash tables
can be chosen to trade off hash collisions and space required.

7) Inserting clusters: After creating all cluster objects and
assigning their respective hash table to them, the clusters need
to be inserted into their parent clusters hash table. The first
cluster with wordlength = 2d is always on x0 and is regarded
as the root of the tree. To avoid race conditions when inserting
clusters, at first only clusters with wordlength = 2d−1

are inserted. This iterative process is repeated until we hit
wordlength = 4. After this, a small bit map is used to store
the information about clusters, as mentioned in III-B3.

For every value xn it is determined, using the now existing
vEB structure, which cluster needs the respective bit set in its
small bit map.

8) Querying: After all the previous steps of building the
vEB tree the structure is ready to be queried. The algorithm for
querying is equal to 1 with extra checks for wordlength = 4,
as the recursion stops there and the bit field is queried instead.
Bit field querying is trivial using the ffs (find first set) and
clz (count leading zeros) intrinsics after shifting the bit field
accordingly.

9) Building complexity: Iterative algorithms, such as deter-
mining the cluster sizes, search the set D with n elements by
checking consecutive values have a time complexity of O(n).
Utilizing binary search on either the sorted set or first flags
achieves O(log2(n)). Since smaller clusters are more common
and their amount of clusters stored within are comparatively
small, it is beneficial to only check the first 5–10 elements
and then proceed to use a binary search, should the search
condition have not been met yet.

Since binary search is the slowest algorithm in the full
building pipeline the overall time complexity is O(n·log2(n)).
The biggest benefit of our method is that it is able to scale
efficiently with the number of cores available, which makes it
perfect for the usage on GPUs.

IV. EVALUATION

For the evaluation we used a NVIDIA RTX 3090 graphics
card using CUDA 11.1.1 [42] while running the algorithm in
64 bit mode, as the address space is required to be bigger than
232 for the algorithm to process large data sets. To generate
random data the library cuRAND [43] is used.

Fig. 5 shows the comparison between the query times when
using vEB and binary predecessor search. We ran multiple

Fig. 5. vEB query times compared to binary search (100% corresponds to
binary search).

queries in parallel on the GPU by using one GPU thread per
query element and the same distribution function with different
seeds for data generation and query unless explicitly men-
tioned otherwise. Linear data corresponds to fully occupied
sequential data (1, 2, 3, ...), uniform, normal and log-normal
distributions are self-explanatory, linear data-uniform query
represents random queries within a fully occupied range, and
multi Gaussion uses two shifted normal distributions. When
querying using binary search, we first de-duplicate the data set
as the vEB tree implicitly does the same and our evaluation
would otherwise be unfairly skewed.

When using linear data, the time for querying exceeds
the query time for binary search for all n. Binary search
outperforms the vEB tree in this case as the queries made to
the data are also linear therefore benefit from caching, whereas
the vEB tree suffers from a computational overhead and cannot
benefit as much from caching.

In all other cases the vEB tree outperforms the binary
search after reaching a certain threshold where the accesses
to memory are slower for binary search than the constant
computational overhead for the vEB tree. Note that we focus
on 106 and more elements, as lower counts do not utilize the
GPU well and results fluctuate significantly between query
counts.

Fig. 6 shows the space overhead compared to the de-
duplicated data. The complete vEB tree consists out of a single
hash table array and the clusters array. Linear data shows the
best case for the vEB tree space as all values are next to each
other. This guarantees that a large part of the values are stored
within the bit fields and therefore do not generate clusters. The
closer the values are together the less space is being used. This
is also noticeable for the normal and log normal distribution
as the overall range of possible values stays the same and
as more values are being added the gaps between values get
smaller.

Fig. 7 shows the build times of vEB trees for various
distributions, including the sorting of the data set. Build times
are mostly independent of the distribution.



Fig. 6. vEB space overhead compared to the raw data for binary search.

Fig. 7. vEB build times in ms.

V. DISCUSSION

A. Performance

To our knowledge we show the first GPU-based vEB tree
build algorithm. We also compared our novel construction
algorithm with a traditional construction algorithm on the
CPU, for which our GPU implementation outperforms the
traditional by at least one order of magnitude up to 20
million values. For larger data sets the memory consumption
and likely heap fragmentation resulted in even more severe
speedups of our GPU implementation. While we did not run
an extensive formal companion with advanced CPU vEB tree
implementations, it still shows that building vEB trees directly
on the GPU is viable.

Querying a vEB tree as outlined in Alg. 1 is a recursive
procedure which is a heavy strain on the limited stack size
of each thread on the GPU and thus limits the performance
heavily. Additionally, the procedure features multiple data
dependent branches, which leads to inter warp divergence
and reduces performance when running multiple queries in
parallel. To avoid using a stack for the recursive call on
the GPU, we unroll the loop. This is possible because the
maximum recursion depth can be calculated beforehand and
depends only on the maximum word length.

Despite the mentioned optimizations querying a vEB tree
on the GPU is only up to 1.2× faster for very large data sets

than binary search on the same data. For smaller data sets
the memory overhead of vEB trees, combined with a higher
thread divergence, does out-weight the smaller iteration count
of querying a vEB tree. Thus, queries using vEB trees are only
viable when working on very large data. Also, the performance
gain is limited to about 1.2×. However, the performance gain
was mostly independent of the data distribution, only when
showing a very high correlation between both the data and the
query elements in neighboring threads, binary search always
outperforms our vEB tree—which is a very contrived case.

B. Space

Cluster sizes and hash table element sizes are the dom-
inating factors for the space requirements. For simplicity
our implementation does not specialize on the word length
for storage, instead clusters are all the same size. Changing
the clusters implementation to separate smaller structures for
smaller word lengths could improve the space impact they
have. Furthermore, these arrays could improve the perfor-
mance as the overall memory consumption would decrease.
The space overhead (for those data sizes where vEB trees
achieve good performance) ranges between 1.5× to 2.5×.

C. Limitations

Data locality plays an important role in space requirements
of vEB trees. Big gaps between data points increase the
number of clusters needed. For smaller data sizes a space
overhead of more than a factor of 20 is possible. This is
due to large distances between values, requiring each value
to generate at least one cluster which needs at least ten-fold
the memory compared to storing just the value.

VI. CONCLUSION

We showed that vEB trees can be built efficiently on the
GPU using our novel parallel building algorithm. Building
times for the vEB tree are bounded by each thread needing
at most logarithmic time. We also showed that in certain
cases, it is possible to keep additional space requirements
comparatively low. vEB trees can outperform binary search
on very large data sets for various data distributions. Thus,
our vEB tree implementation has shown promising results for
a certain set of use case. While one cannot rate vEB trees as
universally viable on the GPU, they can be a viable tool when
used in the right place. While dynamic memory allocation on
the GPU is in general a costly process [44], [45], using queues
[46] or dynamic hashing [29] may even allow for dynamically
growing vEB trees.
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