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Fig. 1. Various scenes rendered by our software graphics pipeline in real-time on a GPU. (a) A smooth triangulation of the water surface in an animated ocean
scene is achieved via a custom pipeline extension that allows the mesh topology to dynamically adapt to the underlying heightfield. (b) Scene geometry
captured from video games like this still frame from Total War: Shogun 2 is used to evaluate the performance of our approach on real-world triangle distributions.
(c) Many techniques such as mipmapping rely on the ability to compute screen-space derivatives during fragment shading. Our pipeline architecture can
support derivative estimation based on pixel quad shading, used here to render a textured model of a heart with trilinear filtering; lower mipmap levels are
filled with a checkerboard pattern to visualize the effect. Total War: Shogun 2 screenshot courtesy of The Creative Assembly; used with permission.

In this paper, we present a real-time graphics pipeline implemented entirely
in software on a modern GPU. As opposed to previous work, our approach
features a fully-concurrent, multi-stage, streaming design with dynamic
load balancing, capable of operating efficiently within bounded memory. We
address issues such as primitive order, vertex reuse, and screen-space deriva-
tives of dependent variables, which are essential to real-world applications,
but have largely been ignored by comparable work in the past. The power of
a software approach lies in the ability to tailor the graphics pipeline to any
given application. In exploration of this potential, we design and implement
four novel pipeline modifications. Evaluation of the performance of our
approach on more than 100 real-world scenes collected from video games
shows rendering speeds within one order of magnitude of the hardware
graphics pipeline as well as significant improvements over previous work,
not only in terms of capabilities and performance, but also robustness.
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1 INTRODUCTION
For a long time now, the hardware graphics pipeline has been the
backbone of real-time rendering. However, while a hardware im-
plementation can achieve high performance and power efficiency,
flexibility is sacrificed. Driven by the need to support an ever grow-
ing spectrum of ever more sophisticated applications, the graph-
ics processing unit (GPU) evolved as a tight compromise between
flexibility and performance. The graphics pipeline on a modern
GPU is implemented by special-purpose hardware on top of a large,
freely-programmable, massively-parallel processor. More and more
programmable stages have been added over the years. However,
the overall structure of the pipeline and the underlying rendering
algorithm have essentially remained unchanged for decades.
While evolution of the graphics pipeline proceeds slowly, GPU

compute power continues to increase exponentially. In addition
to the graphics pipeline, modern application programming inter-
faces (API) such as Vulkan [Khronos 2016b], OpenGL [Khronos
2016a], or Direct3D [Blythe 2006], as well as specialized interfaces
like CUDA [NVIDIA 2016] and OpenCL [Stone et al. 2010] also
allow the GPU to be operated in compute mode, which exposes the
programmable cores of the GPU as a massively-parallel general-
purpose co-processor. Although the hardware graphics pipeline
remains at the core of real-time rendering, cutting-edge graphics
applications increasingly rely on compute mode to implement ma-
jor parts of sophisticated graphics algorithms that would not easily
map to the traditional graphics pipeline such as, e.g., tiled deferred
rendering [Andersson 2009], geometry processing (cloth simula-
tion) [Vaisse 2014], or texel shading [Hillesland and Yang 2016].
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Observing this trend of rapidly growing compute performance
and more and more complex rendering work being pushed to com-
pute mode, we ask the question: What level of performance could
be achieved by a software graphics pipeline on a current GPU?
As an alternative to a hardware pipeline, software pipelines can

provide similar or identical feature sets, while inherently supporting
full programmability. For systems lacking a dedicated GPU, CPU
implementations, such as the widespread Mesa3D library [1993]
or the highly-optimized (now discontinued) Pixomatic SDK [RAD
2002] have served as a fallback as well as a secondary rendering
engine, for example, for visibility culling [Andersson 2009].
We are not the first to raise the question of a software graphics

pipeline for the GPU. Previous work such as CUDARaster [Laine and
Karras 2011] has demonstrated that software approaches can achieve
high-performance. However, to the best of our knowledge, our
CUDA Rendering Engine (cuRE) is the first end-to-end Direct3D9-
class software graphics pipeline architecture able to deliver real-time
rendering performance for real-world scenes on a current GPU. Un-
like previous approaches, it encompasses both geometry processing
and rasterization in a streaming fashion and operates within bounded
memory while preserving primitive order until the blending stage.

The main contribution of this work is a design and a set of algo-
rithms for achieving a high-utilization software implementation of
a streaming graphics pipeline on the GPU. Extensive benchmarks
demonstrate real-time performance at a low overhead factor (usually
within one order of magnitude) compared to a reference implemen-
tation running on OpenGL. For demanding scenarios, where the
workload is dominated by shading, cuRE can reach about 40% of
the OpenGL performance. Moreover, relative performance is gener-
ally highly-consistent with OpenGL across a variety of scenes and
across all individual stages of the pipeline. Finally, we present four
experimental pipeline extensions that demonstrate the versatility
of a software approach.

2 RELATED WORK
For an introduction to GPU architecture and programming model,
we refer the reader to the available literature such as, e.g., Fatahalian
and Houston [2008], or Nickolls et al. [2008]. In this paper, we will
follow CUDA [NVIDIA 2016] terminology: The GPU consists of
multiprocessors that combine single instruction, multiple data (SIMD)
cores with fast shared memory. A kernel function is launched to a
large number of parallel threads, grouped intowarps (assigned to one
SIMD core) and further into blocks (assigned to one multiprocessor).
On the CPU, where multi-threaded applications are explicitly

controlled by the application programmer, each thread runs a unique
function. In contrast, on the GPU, a single kernel function is shared
by all threads. A typical way of implementing a software pipeline
on the GPU is launching one kernel per stage. Unfortunately, such
an approach requires all data to be passed from one stage to the next
through slow global memory. Exploiting producer-consumer locality
to redistribute some data through fast on-chip buffers becomes
difficult to impossible. Additionally, as illustrated in Fig. 2a, if the
pipeline is expanding, intermediate data can consume excessive
amounts of memory as it must be buffered in its entirety. If a stage
cannot fully occupy the GPU, processors are left to idle.
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e

memory

multiprocessors

(b) streaming pipeline

Fig. 2. Traditional multi-pass versus streaming pipeline processing. (a) Im-
plementing a pipeline as a sequence of kernel launches (typically one for
each pipeline stage) leads to suboptimal GPU utilization and excessive
memory requirements. If a single stage cannot fully occupy the GPU, cores
will be left to idle until processing of the next stage begins. Furthermore,
intermediate data between kernel launches must be buffered in its entirety
before it is consumed by the next stage. (b) A persistent megakernel with
dynamic scheduling enables a streaming pipeline implementation. Work
can be consumed as soon as it becomes available, leading to much better
GPU utilization. By prioritizing the processing of elements towards the end
of the pipeline over elements that may generate new work, the system can
operate within bounded memory requirements.

These restrictions can be avoided by using a persistent threads
architecture [Aila and Laine 2009], which fully occupies the GPU
with threads that keep drawing items from a global work queue until
the queue is empty. New work items can be dynamically inserted
into the queue [Tzeng et al. 2010]. Combining persistent threads
with a megakernel—an approach popularized for raytracing [Parker
et al. 2010]—allows load balancing of different stages by dispatching
work items to individual multiprocessors. All threads share a single,
monolithic kernel function which contains branches with the code
for each stage. One limitation of such a persistent megakernel design
is that all multiprocessors must share the same resource configura-
tion, which is determined by the most expensive stage [Laine et al.
2013]. Additionally, the global work queue can become a bottleneck.
However, the advantage of being able to locally pass data between
stages through shared memory can outweigh the cost of suboptimal
occupancy, and the bottleneck of the global work queue can be alle-
viated by using a separate work queue for each stage [Steinberger
et al. 2014]. Furthermore, by prioritizing later stages over earlier
ones, buffer fill levels can be kept below a threshold (Fig. 2b).

2.1 Parallel rendering
Parallelization is key to achieving the level of performance that
real-time rendering demands. However, while the operation of each
stage of the graphics pipeline is inherently parallel, the nature of
parallelism changes drastically throughout the pipeline. A stream of
input primitives entering the pipeline can be processed in parallel
on a per-primitive level. However, the number of pixels that will be
covered by each primitive varies and cannot easily be predicted.

At the most fundamental level, work in the graphics pipeline can
be parallelized either by distributing work associated with individ-
ual primitives, or by distributing work associated with individual
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Fig. 3. Graphics pipeline for rendering indexed triangle lists. The pipeline consists of a geometry processing section where input triangles are projected to the
image plane and a rasterization section where the pixels covered by each projected triangle are subsequently filled in. The input assembly stage starts by
forming vertices from input vertex attributes. Each vertex is transformed by the vertex shader into a projected position and a set of output attributes to be
interpolated across triangles. Primitive assembly then constructs triangles from transformed vertices. Triangles facing away or outside the viewport are culled
before the triangle setup stage prepares the remaining triangles for rasterization. The rasterizer determines which pixels are covered by each triangle. For each
covered pixel, a fragment consisting of depth and other interpolated attributes is fed into fragment shading to compute the fragment color. Finally, the raster
operations stage combines the shaded fragments for each pixel by perfoming the depth test and blending fragment colors into the framebuffer.

screen regions among available processors. When distributing work
per primitive, we speak of object-space parallelism; distributing
work per screen region is typically referred to as screen-space paral-
lelism. Molnar et al. [1994] classified parallel rendering approaches
based on the “sorting” point in the pipeline, where the system redis-
tributes work from object-space to screen-space: sort-first, sort-last,
or sort-middle. Eldridge et al. [2000] expanded the sorting taxonomy
by introducing the sort-everywhere approach. Our approach can be
classified as sort-everywhere, but aligns the sorting steps with the
computational hierarchy on the GPU: We use sort-middle between
multiprocessors, and sort-everywhere between cores inside a mul-
tiprocessor. We discuss the reasoning behind this approach in the
following section.

2.2 Software graphics pipelines
Software pipelines on the CPU were commonly used in industry
prior to the introduction of the consumer GPU [Mesa 3D 1993;
RAD 2002]. Later, the Intel Larrabee project [Seiler et al. 2008]
demonstrated a software rendering pipeline on a multicore system
with wide vector units. Unfortunately, Larrabee was ultimately not
deemed competitive enough to yield a commercially viable product
and repurposed as a high-performance computing appliance. How-
ever, Larabee sparked a lot of enthusiasm in the graphics research
community and was an important inspiration for this paper.

A hardware-agnostic simulation environment for arbitrary graph-
ics pipelines (GRAMPS) has been introduced by Sugerman et al.
[2009]. However, only a CPU target for the GRAMPS architec-
ture [Sanchez et al. 2011] has been published to date.

One of the first works demonstrating an implementation of a stan-
dard graphics pipeline in software on a GPU was FreePipe [Liu et al.
2010]. While FreePipe is a complete end-to-end software pipeline,
its architecture follows a sort-last approach and suffers from poor
GPU utilization in typical scenes due to a lack of load-balancing.
For standard depth-buffering, they only present an approximate
approach based on an interleaved depth and color buffer managed
with atomic operations.

Probably the fastest software rendering pipeline implementation
to date is CUDARaster [Laine and Karras 2011], a highly-optimized
sort-everywhere design using separate kernel launches to imple-
ment each pipeline stage on the GPU. Due to its reliance on low-
level optimizations, it is tightly coupled to the original hardware

it was designed for. A more recent approach with a similar aim is
Piko [Patney et al. 2015], a compiler for programmable graphics
pipelines with a CPU and GPU backend. Like CUDARaster, Piko uses
a sort-everywhere approach on top of a sequential kernel architec-
ture. Both approaches separate pipeline stages into multiple kernels.
Therefore, they do not support a streaming pipeline model and can
be subject to the excessive memory requirements and bandwidth
issues discussed before. CUDARaster reports a memory overhead
of 2–4× the size of the input data for internal buffering. Both CUD-
ARaster and Piko focus on rasterization and move the formation of
the input stream into a preprocessing step. Piko does not address
clipping, concurrent framebuffer access, and ordering constraints.

3 GRAPHICS PIPELINE ARCHITECTURE
Fig. 3 shows the logical graphics pipeline implemented in cuRE.
Without loss of generality, we focus on rendering of indexed triangle
lists. Other primitive types follow analogously. To limit the scope of
this discussion, the treatment of a tessellation stage will be deferred
as future work. Furthermore, we shall mention geometry shaders
only by noting that such a stage is a straight-forward extension to
the primitive processing stage of the pipeline architecture presented
in the following.

3.1 Design considerations
Our design aims to provide a level of functionality that is compa-
rable to Direct3D9-class hardware. This implies a stateful pipeline,
and, in particular, preservation of primitive order. Fragments must
be blended in the same order in which their generating primitives
were specified, at least when using a non-associative blend func-
tion. Moreover, we require that fragment shaders must be able to
compute screen-space derivatives for dependent variables, e.g., to
support mipmapping [Williams 1983]. In addition to these func-
tional requirements, a practical real-time rendering pipeline must
operate within bounded memory.
Given the dynamic workload presented by a graphics pipeline,

the main challenge for a competitive software implementation is to
ensure near-peak utilization of all available processing cores. Con-
temporary hardware implementations typically follow a sort-middle
or sort-everywhere approach [Purcell 2010], sort-first and sort-last
approaches have been shown to exhibit poor scalability [Eldridge
et al. 2000]. Guaranteeing blending in primitive order would be
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expensive in a sort-last approach. A sort-first approach would likely
be susceptible to load imbalances.
In contrast, sort-everywhere benefits from exposing multiple

points in the pipeline that provide opportunities for optimization.
However, a software pipeline executing on an actual hardware must
not only consider logical communication cost, but also actual com-
munication cost. On a contemporary GPU, communication across
multiprocessors (via global memory) is orders of magnitude slower
than communication across SIMD cores within a multiprocessor (via
shared memory.) This circumstance requires to make a trade-off:
One the one hand, the cost of global communication is likely going
to dominate all other design decisions performance-wise. On the
other hand, some global communication is necessary for effective
load balancing, in order to ensure high utilization of the device.
Consequently, we found a tiled rendering approach with sort-

middle in global memory, between geometry processing and rasteri-
zation, to be the optimal design point. Allowing no global redistribu-
tion at all (as in sort-first or sort-last) would not facilitate effective
load balancing, while allowing more than one global redistribution
step (as in full sort-everywhere) becomes too costly in terms of mem-
ory bandwidth to remain competitive. We characterize the resulting
strategy as "global sort-middle, local sort-everywhere-else."
Fig. 4 illustrates our pipeline architecture. The two main stages,

geometry processing and rasterization, redistribute via global mem-
ory. The sub-stages of each of the main stages move much larger
amounts of data than the main stages, but also offer a large degree
of producer-consumer locality. Taking advantage of this producer-
consumer locality, we redistribute between sub-stages only locally
through fast on-chip shared memory without having to sacrifice
significant load-balancing potential.
In the geometry stage, the most important local redistribution

takes place from vertex processing to primitive processing. Vertex
processing loads batches of input indices and sorts out duplicates
to avoid redundant vertex shader invocations. Shared memory is
used to pass vertex shader outputs on to primitive processing.

In the rasterization stage, the viewport is subdivided into bins of
configurable size. Each bin is assigned a rasterizer ; multiple bins can
map to the same rasterizer. Each rasterizer reads triangles covering
its bins from an input queue in global memory. During primitive
processing, each triangle is inserted into the input queues of all
rasterizers assigned to bins covered by the bounding rectangle of
the triangle.
Every rasterizer’s input queue is exclusively assigned to one

thread block. As a consequence, each such rasterizer thread block
gains exclusive access to the corresponding framebuffer regions.
This exclusive access supports a coarse-to-fine rasterization strategy
with communication only in shared memory: Per bin and triangle,
a thread determines coverage of tiles in a bin. For each covered tile,
pixel-wise coverage masks are determined. Pixel coverage masks
are further compacted, and rasterizer threads are reassigned to
pixel quads or individual fragments for fragment shading. Finally,
fragment shading threads perform in-order framebuffer blending
using local synchronization.
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Fig. 4. Overview of our pipeline architecture. An entire thread block is either
running geometry processing or rasterization in parallel for a batch of trian-
gles. We rely on global work redistribution between geometry processing
and rasterization. Producer-consumer locality allows us to limit redistribu-
tion between all other stages in ways that enable the use of faster forms
of local communication. Geometry processing uses on-chip memory and
the register file to locally redistribute data between vertex processing (VP)
and primitive processing (PP). Rasterization uses on-chip memory to lo-
cally redistribute data between bin rasterizer (BR), tile rasterizer (TR), and
fragment processing (FP).

3.2 Implementation strategy
We implement the streaming graphics pipeline using the persistent
megakernel approach of Steinberger et al. [2014]. The stages of the
rendering pipeline are branches within the kernel fuction, which
are called from the megakernel scheduler, which is itself a branch
of the kernel function. The scheduler dynamically assigns thread
blocks the role of a rasterizer or a geometry processor on demand for
optimal load balancing. In a streaming approach, the global queues
must operate within limited storage requirements, so the scheduling
of each block must take these limits into consideration:

(1) If there is sufficient work available for rasterization, the block
executes rasterization.

(2) Otherwise, if there are input primitives for geometry process-
ing available and all rasterizer queues can accept sufficient
additional triangles, the block executes geometry processing.

(3) If there is no input geometry available, the block consumes
any rasterization input data that is left in its queue.

(4) If there is neither input to geometry processing nor rasteriza-
tion available and no other block is still processing geometry,
the block terminates.

For the sort-middle step, we must provision sufficient space in the
rasterizer queues (as mentioned in section 2) to accommodate the
worst case of all blocks starting geometry processing at the same
time with all their triangles ending up in the same rasterizer queue.
To avoid these buffering requirements dominating the memory us-
age, we store only references in the rasterizer input queue and
allocate the triangle data in a separate triangle buffer (Fig. 5). This
indirect memory layout not only removes duplicates when a tri-
angle covers multiple bins, but also reduces the data output of ge-
ometry processing, which can make up a significant part of the
overall memory transfer. The triangle buffer is implemented as an
atomically-operated ring buffer with reference counting to make
sure data is not overwritten before it is consumed by rasterization.
The rasterizer input queues use similar ring buffers, consisting of
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00 3 00 00 0 0

(b) triangle buffer

Fig. 5. (a) Triangles may be duplicated into multiple rasterizer queues. (b)
By using a separate triangle buffer and storing only indices in the rasterizer
queues, we can significantly reduce the memory requirements.

entries guarded by atomically operated flags, to avoid that entries
are read before they have been written.

The way bins are assigned to rasterizers influences the load put on
individual rasterizers. Choosing a good bin-to-rasterizer mapping is,
therefore, important for performance. A detailed analysis of different
rasterizer patterns has been presented by Kerbl et al. [2017]. We rely
on a pattern based on their X-shift design, which has proven to be
most effective in practice.

In the following sections, we describe geometry processing (Sec-
tion 4) and rasterization (Section 5) in more detail.

4 GEOMETRY PROCESSING
Geometry processing reads the indices for each primitive, fetches the
vertex attributes and runs the vertex shader. Since vertex shader in-
vocations are costly, identical vertices indexed multiple times should
ideally be processed only once. Such vertex reuse was not consid-
ered in previous work, since the irregular accesses to cached shader
results is difficult to handle in parallel. Naïve approaches, such as
simply executing the vertex shader once for each index [Liu et al.
2010] or running the vertex shader as a preprocessing step [Laine
and Karras 2011], ignore the fact that only a small subset of the
vertex data may actually be referenced by a draw call.

Vertex shading and vertex reuse. Our geometry stage processes
input geometry in batches of primitives. We identify reoccurring
indices within a batch and invoke the vertex shader only once per
batch for each vertex index in three steps: (1) Geometry processing
first loads indices for a batch of primitives, deduplicates indices,
and fetches vertex attributes for each distinct vertex. (2) The vertex
shader is executed exactly once for each distinct vertex. (3) We
reassemble the original triangles using the transformed vertex data.
As batch size, we use a common multiple of warp size and primitive
size—for example 3 · 32 = 96 for a triangle list—which allows us
to process each batch using one warp and, thus, take advantage
of efficient intra-warp communication primitives. A more detailed
description of this approach can be found in [Kenzel et al. 2018].

Primitive assembly. With our vertex reuse implementation, every
thread executes the vertex shader for a single vertex. Consequently,
the attributes for a triangle are distributed among threads. We use

one thread per triangle to assemble the primitive data. We ensure
that we have enough threads for all the triangles by limiting the
number of indices loaded in the previous stage. We utilize the map-
ping from indices to threads created during vertex reuse detection
to access the vertex shader results from other threads using register
shuffles.

Clipping and culling. With the entire triangle data available, we
begin by computing the clip-space bounding rectangle for each tri-
angle. Backfacing triangles or triangles that do not intersect the view
frustum are simply skipped. Traditional pipeline designs would clip
triangles at the near and far planes in this step, possibly generating
multiple output triangles for a single input. However, our software
rasterizer has to run on the general-purpose cores of the GPU which
are mainly designed for floating-point arithmetic. Working in float-
ing point, we make use of homogeneous rasterization [Olano and
Greer 1997] which allows us to avoid explicit primitive clipping.
Nonetheless, to avoid unnecessary scheduling overhead, we com-
pute the bounding rectangle of the clipped triangle and subsequently
use this tight bounding rectangle for rasterizer assignment.

Triangle setup. If a triangle is not discarded in the previous stage,
it will potentially be processed by multiple rasterizers. To determine
which rasterizers the triangle needs to be sent to, we compute which
bins are covered by the triangle’s bounding rectangle. Triangle ras-
terization requires a number of parameters, such as the coefficients
of triangle edge equations and attribute plane equations. Since all
the necessary data is available at this point, we compute these pa-
rameters and store them in the triangle buffer. For more efficient
memory access, triangle parameters are packed in ways that enable
the use of vector load and store instructions. Finally, we add the
triangle’s location to the input queues of all covered rasterizers.

Primitive order. With multiple blocks working on geometry in
parallel, the order in which triangles end up in the rasterizer queues
is arbitrary. However, fragments must be output in primitive order.
Since we cannot afford the bandwidth for a fragment reorder buffer,
we require that fragments already be generated in primitive order. To
do so, we rely on the rasterizers consuming their input in the correct
order. Previous approaches, which did not implement a streaming
design, had multiple options to enforce primitive order. For example,
when stages are executed as separate kernels, a prefix sum can be
used to allocate successive memory locations for the output.

Enforcing that triangles are entered into the rasterizer queues in
the right order would require expensive synchronization between
geometry processing blocks. Instead, we make use of the exclusive
access a rasterizer has to its input queue to restore order before
triangles are consumed. This re-ordering simply corresponds to
sorting the input queue according to primitive id. Note that the
indirect memory layout using the triangle buffer pays off here, since
we only need to move lightweight triangle references.

However, a sorted input queue alone is not sufficient. A triangle
might simply not be in the queue yet because it is still going through
geometry processing, or it might never arrive because it was culled.
The rasterizer must not consume input past a point up to which the
queue is known to be complete in the sense that no more primitives
will arrive. To achieve this, we track the progress of primitives
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Fig. 6. A bitmask is used to track which primitives have completed geometry
processing. Rasterizers use this information to restore primitive order in
their input queues before consuming triangles. (1) parr = 89 indicates that
all primitives up to id 89 have previously been accounted for. (2) Having
determined that all bits from parr up to 94 are now set, the block updates
parr and clears the bits. (3) It then starts moving a sorting window (blue
rectangle) from the back of the queue to the front. prdy marks the end of
the part of the queue currently known to be complete and in order. A block-
wide radix sort takes the position of each element relative to the sorting
window (blue) and reorders these values using the primitive id (remapped
to the range [0, parr − prdy ]) as key (grey). (4) Queue elements are then
rearranged accordingly and the sorting window is moved to the front. (5) The
first three elements are ready to be processed and prdy is updated.

through geometry processing using a large bitmask stored in a ring
buffer, where each bit represents a primitive. When a geometry
processing thread enqueues or discards a triangle, it updates the
corresponding bit. Before sorting the input queue, the rasterizer
searches the bitmask for the first bit not set. Note that a simple
counter is not a viable alternative to this bitmask, as updating it
would require serialization of geometry processing threads.

We implement an efficient search for the lowest zero bit by a
parallel find-first-set operation on aword from the bitmask, followed
by a reduction. To limit the size of the bitmask, we prune the lower
part of the mask as soon as all bits up to a progress valueparr are set.
We store parr and reuse all bits below parr . A pipeline flush only
needs to reset parr , as all bits are unset when all primitives have
moved through the pipeline. Updating parr with atomic operations
allows sharing one progress tracking buffer by all rasterizers.
For reordering, we use a block-wide radix sort. Primitives with

id larger than parr are not ready for consumption yet; sorting only
must deliver primitives with id less than parr to the front of the
queue.We achieve this bymoving a sorting window from the back of
the queue to the front (Fig. 6). In our experiments, a sorting window
ofw = 8–10× the block size, moving alongw/2 primitives in each

step, achieved the best performance. As soon as the sorting window
reaches the front of the queue, we search for the largest primitive id
less than parr . This element marks the end of the part of the queue
that is complete, its position is denoted as prdy . As long as the id
of all sorted primitives is below parr , we continue sorting from the
back. Since we are only interested in primitives with id less than
or equal to parr , we can remap the primitive id from [prdy ,parr ]
to [0,parr − prdy ] to use as the sorting key. Doing so reduces the
number of bits the radix sort needs to consider, thus avoiding the
sorting time growing with absolute value of the primitive ids.

5 RASTERIZATION
Rasterization reads triangle data from the queues in global memory
and outputs fragments to the framebuffer. To generate fragments, we
use a hierarchical rasterization approach with three levels, similar
to Greene [1996]. In our preferred configuration, every 64 × 64 bin
is split into 8 × 8 tiles, and every tile covers 8 × 8 pixels. Since large
triangles lead to significant data expansion during rasterization, it is
challenging to keep temporary data in shared memory and ensure
high occupancy. Aiming for high thread utilization, we require
dynamic work balancing between the sub-stages of rasterization,
The entire workload must stay within the bounds of shared memory,
independent of the number of intermediate objects that might be
generated, and must not interfere with primitive order.

5.1 Bin raster work distribution
There are multiple options to implement the required work distribu-
tion. First, we could consider threads as individual workers which
can take on any stage at any point and store intermediate data in
atomically operated queues. However, this would lead to increased
thread divergence, increased overhead from atomic operations, and
keepingmemory usage boundedwould be difficult. Second, we could
use entire warps as workers, allowing them to cooperatively work
on individual objects. However, this approach would still require
atomically operated queues and leave the problem of unbounded
memory requirements unresolved. Instead, we chose to coordinate
all threads within a block, assigning all of them to the same stage at
once. This design decision allows using prefix sums (c.f. “Allocating
Processors” in Blelloch [1990]) for work assignment, and we can
assign an arbitrary number of threads to work cooperatively on
one object. Using a prefix sum also automatically ensures primitive
order is preserved.
Bounded memory consumption is tackled with an encode only,

expand in next stage strategy. We limit every thread to generate a
single fixed-size output. This output must encode the number of
threads required to be completed in the next stage and a hook to
decode the actual data. This strategy is similar to how hardware
tessellation subdivides work between the hull shader (only sets
tesselation factors) and the domain shader (generates vertices before
commencing shader code). Threads working on the same stage and
producing a fixed-size output allow temporary data to be stored as
a simple array in shared memory.
The rasterization work distribution (Fig. 7) works as follows:

Triangles are fetched from the input queue. Binning computes the
number of potentially covered bins. A first work distribution assigns
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Quad Masks
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Fig. 7. Our rasterization work distribution using shared memory. All threads
work concurrently on the same stage, generating output for the next stage.
The following stages only return to the previous one when all data from
that stage has been consumed, e.g., the sixteen grayed-out tile mask bits
have been consumed in a previous step.

bins to bin rasterizer threads, which compute tile bit masks and
store them in the next work distribution. After tiles are assigned to
threads, they compute fragment coverage and quad masks, which go
through work distribution again before entering fragment shading.
After all threads are done with fragment shading and blending, they
consume the next set of quad masks from the work distribution. The
block continues with fragment shading and blending, until the quad
mask work distribution is empty. Then, the tile rasterizer continues
work on the next set of available tiles. This approach ensures that the
block only steps back one stage when all elements from the current
set of work have been processed. It can never happen that more
output is generated than can be held in the work distributions. Note
that all information from the previous stages is readily available at
any point, e.g., the fragment shader can use information from the
bin and tile rasterizer to determine the fragment coordinates.

5.2 Hierarchical rasterization
One thread per triangle computes binning information from the tri-
angle’s bounding box. Binning determines howmany bins owned by
the active rasterizer may be covered by the input triangle. Efficient
handling of large triangles demands that this computation must not
iterate over bins. In accordance with the encode-only strategy, we
compute the actual coordinates of the hit bin right before launching
the bin rasterizer.
The bin rasterizer uses one thread to determine which tiles in

a given bin are hit by the triangle. Using the concept of coverage
masks, the hit tiles can be determined without explicitly checking
each tile. To avoid the memory traffic incurred by precomputed
coverage masks [Laine and Karras 2011], we use an approach similar
to Kainz et al. [2009] to construct a conservative coverage mask in
scanline order directly from the triangle’s edge equations (Fig. 8).

The tile rasterizer determines the actual pixels inside its tile that
are covered by the triangle. We follow the same approach as for bin
rasterization, however, instead of constructing a conservative mask,
the tile rasterizer computes an exact rasterization. Our coverage
rasterizer always works along positive y steps, flipping the vertices
for edges with negative slope. This approach makes sure that edges
shared between triangles exhibit the same sequence of floating point
operations and deliver the same intersection results. This establishes
a robust fill convention for edges that exactly intersect pixels.
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(b) Bounding Rectangle
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(c) First Edge
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(d) Second Edge
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(e) Third Edge
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(f) Covered Tiles

Fig. 8. The bin rasterizer computes the tile coverage mask using the bound-
ing rectangle and edge equations of a triangle (a) and stores it as a bit
mask. The bounding rectangle (b) creates a rectangular pattern and can be
generated by duplicating the pattern of a single row. For every edge (c-e),
we iterate over all rows, compute the intersection points between the edge
and the row (dark dots) and construct the bit mask for the current row. The
combination of all masks yields the tile mask (f, blue). Note that the edge
equations discard most of the not-hit tiles (grey), possibly a significant num-
ber that would not be discarded by the bounding rectangle (yellow). Due to
conservative tile rasterization, however, some tiles around vertices are only
discarded by the bounding rectangle (orange, bit 09 and 62), justifying the
use of bounding rectangle and edge equations.

5.3 Fragment shading
The coverage mask already contains all the information necessary
to perform fragment shading. We could simply assign one thread for
every set bit in the coverage mask to execute the fragment shader.
However, one crucial feature we must support in the fragment

shader is the computation of screen-space derivatives of dependent
variables (demonstrated in Fig. 1c). While derivatives can be es-
timated from differences to neighboring fragments, neighbors do
not exist in all cases. To solve this problem, we rely on quad frag-
ment shading: the fragment shader is always invoked for quads of
2 × 2 pixels, helper threads are spawned to run the shader for pixels
outside the triangle if necessary, all writes being discarded.
To implement quad fragment shading, we compute another bit-

mask in which bits do not correspond to individual pixels but to
quads of pixels. A bit in this quad coverage mask is set iff any of the
pixels of the quad were covered. The quad coverage mask can be
computed from the original coverage mask using a series of inex-
pensive bit operations. For every set bit in the quad coverage mask,
we start four consecutive threads within the same warp to execute
the fragment shader. Neighboring values of a variable can then be
accessed using register shuffle instructions to estimate screen-space
derivatives via finite differences. We keep the original coverage
mask to identify helper threads and disable writes.
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The rasterizer delivers all pixels that are inside the triangle and
within the bounding rectangle, which has been shrunk during ge-
ometry processing to consider clipping. However, as triangles are
in general not oriented in parallel to the image plane, additional
fragments may be generated in front or behind the near or far plane.
These fragments should be discarded before launching the fragment
shader. When it is safe to do so, one can also perform an early z-test
at this point. The fragment’s interpolated coordinates, depth, and
attributes required by the fragment shader are computed using the
information stored in the triangle buffer by the triangle setup stage.

5.4 Raster operations
Previous software rendering pipelines used very small tiles [Laine
and Karras 2011]. This allows keeping data for blending and depth
testing in shared memory. Small tiles are efficient, if the entire input
data is collected before working on a tile, so that sufficient paral-
lel workload per tile is available. In contrast, data in a streaming
approach only arrives gradually. Setting up a large number of ras-
terizers, each working on a very small tile, would, therefore, leave
many rasterizers waiting for input. Larger input buffers become
necessary, stripping the streaming approach of all its advantages.
Thus, our streaming design makes each rasterizer responsible for
many bins, with framebuffer and depth buffer kept in global mem-
ory accessed during blending operations. Note that the hardware
graphics pipeline relies on special-purpose hardware for efficient
blending, which is, unfortunately, not available in compute mode.
Since multiple fragments are processed in parallel within each

rasterizer, different threads might potentially access the same pixel
for blend operations. To resolve this issue, we have to detect and
resolve contention within the rasterizer before blending. According
to our experiments, delaying the conflict avoidance logic to the end
of the pipeline works best.

Before launching the fragment shader, we detect possible access
conflicts by searching from each coverage mask to the front, looking
for a tile with the same coordinates and an overlapping mask (in
the original mask, ignoring helper threads) using simple bit oper-
ations. If a conflict is detected, we store the index of the closest
coverage mask involved in a conflict (the predecessor index). If there
are multiple conflicts, this approach implicitly generates a linked
list of conflicts. After fragment shading, every thread with an active
conflict holds back on blending. After the other threads completed
their blending operation, we synchronize all threads in the block.
Threads whose predecessor does not have a store conflict are now
first in line and can complete blending. Afterwards, they set their
predecessor index to zero, indicating to threads that are waiting on
them that it is safe to perform blending now. We continue this loop,
until all threads complete their blend operations. Note that, if there
are no conflicts, this approach allows blending to complete without
any serialization.

6 PROGRAMMING INTERFACE
Our software implementation is based on the assumption that tar-
get hardware and execution configuration are known at compile
time. This allows decisions based on architectural properties such
as the number of multiprocessors, SIMD width, or the number of

threads per block to be made during compilation and, thus, avoids
unnecessary run-time overhead and makes sure that optimal code
is generated for every GPU.

The C++ implementation can be divided into two main parts: the
graphics pipeline itself, and a module layer. The graphics pipeline
is built as a C++ class template that expects the vertex buffer, input
layout definition, primitive topology, blend function, and shaders to
use as parameters.

The module layer lets the user instantiate different pipeline con-
figurations, and takes care of generating the necessary CUDA kernel
functions to invoke the pipeline and manage pipeline state. A mod-
ule definition containing one or more pipeline configurations can be
compiled into a binary image using the standard CUDA toolchain.
A matching host library is provided, which offers utility functions
for accessing pipeline configurations inside a CUDA binary, finding
a suitable configuration for a given GPU, and launching draw calls
from the CPU side.
This design offers a convenient high-level interface to a low-

level pipeline implementation, in certain ways similar to how a
graphics pipeline is exposed through a modern graphics API. Shader
programs are represented as C++ function objects. Shader input and
output parameters are inferred from the function signature. Using
template metaprogramming techniques inspired by SH [McCool
et al. 2002], the pipeline implementation automatically matches
shader signatures to the inputs and outputs of the next and previous
stages, allocates inter-stage buffers, and generates code to pack and
unpack shader parameters to and from vector slots for efficient
memory access.

7 PERFORMANCE EVALUATION
To evaluate the performance of our approach on real-world data,
we collected more than 100 test scenes captured from recent video
games. These include Deus Ex: Human Revolution (abbrev. de) with
0.3M–1.2M triangles, Rise of the Tomb Raider (tr) with 0.4M–3.6M
triangles, The Stone Giant Demo (sg) with 2.9M–8.0M triangles,
The Witcher 3: Wild Hunt (tw) 0.3M–4.6M triangles, and Total War:
Shogun 2 (sh) with 0.6M–3.2M triangles. The scenes were captured
by injecting a geometry shader through a Direct3D 11 hook to write
out clip-space geometry for each draw call using the stream output
stage. The resulting triangle soup was turned into an indexed trian-
gle mesh by fusing vertices based on their position. To account for
the fact that some applications switch backface culling modes be-
tween drawcalls, all triangles were duplicated with reversed winding
order. Example scenes are shown in Fig. 9 and also Fig. 1b.

7.1 Experimental setup
As test platform, we used an Intel Core i7-4930K CPU @ 3.4GHz
with 32GiB of RAM running Windows 10. Experiments were per-
formed on an NVIDIA GeForce GTX 780 Ti, GTX 980 Ti, GTX 1080
Ti, and GTX 1080. Timings were obtained as average over 30 frames
after a burn-in period. The full set of results for all combinations
of GPU, renderer, and scene is included as supplemental material.
In the interest of brevity, we will limit our discussion here to a
representative subset.
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(a) tr12 (b) tw12

(c) sg13 (d) fry

Fig. 9. A selection of images representative of the test scenes used: (a) Rise
of the Tomb Raider, (b) The Witcher 3: Wild Hunt, (c) NVIDIA’s Stone Giant
demo, (d) Fairy Forest. (a, b, c) The wireframe renderings on the left hand
side were generated by our pipeline with per-vertex colors extracted from
the original scene; the right hand side shows the source frames as they
were captured from each application. To allow for a meaningful comparison
between all the different approaches, our actual tests use very simple shaders
and, thus, essentially evaluate the cost of the pipeline itself. Rise of the Tomb
Raider screenshot courtesy of Crystal Dynamics; The Witcher 3: Wild Hunt
screenshot courtesy of CD PROJEKT S.A.; Stone Giant screenshot courtesy of
NVIDIA Corporation. All images used with permission.

We compare against the three most important previous works,
namely, FreePipe [Liu et al. 2010], CUDARaster [Laine and Karras
2011], and Piko [Patney et al. 2015], as well as the hardware graphics
pipeline using OpenGL. An additional version of the OpenGL ren-
derer denoted by the subscript f i uses the ARB_fragment_shader_-
interlock extension to force the hardware pipeline to perform in-
terlocked framebuffer access in a way more similar to our software
pipeline, cuRE. For tables and plots, w/o indicates that primitive
order and quad shading is deactivated,w/p is with primitive order,
w/q with quad shading, and no subscript indicates that both are on.
We set the index queue size to 32 000 indices, and our triangle buffer
can hold up to one million entries.
Due to the fundamental differences between all the approaches

to be compared—not only in terms of their mechanisms, but par-
ticularly also their capabilities—we settled on a minimum set of
features that can be supported by all methods to allow for a mean-
ingful comparison. Not all approaches are capable of supporting
primitive-order blending. Some methods utilize an early-depth-test
optimization, while others do not. FreePipe only implements an ap-
proximate depth-buffering scheme. We, thus, use a simple rendering
of interpolated vertex normals without blending or depth buffering
as the lowest common denominator for a performance evaluation
in terms of pure drawing speed.
All methods, except Piko, are implemented as plugins for our

testbed application. Thus, all these methods run in the exact same en-
vironment on the exact same input data. For CUDARaster, we simply
wrap the available open source implementation for our framework.
Since there is no such reference implementation for FreePipe, we

Fig. 10. Memory consumption (as fraction of total device memory) of three
scenes rendered on the GTX 780 Ti at a resolution of 1024×768. CUDARaster
and Piko require excessive amounts ofmemory to run. The baseline is formed
by OpenGL (dashed line) and FreePipe, which only hold the input data in
memory. The light part of the bar shown for cuRE indicates allocated but
unused queue memory.

provide our own implementation of their algorithm. Our OpenGL
reference renderer is based on OpenGL 4.5 core profile and follows
common best practices such as using immutable storage for static
data and uniform buffers to manage shader parameters. OpenGL
drawing time is measured using GL_TIME_ELAPSED queries; the
CUDA-based approaches use CUDA events. Since the overhead for
setting up a new frame varies among the different algorithms, we
compare only time spent on drawing primitives. Each scene is drawn
in a single call as one large mesh using a single shader. No coarse
primitive sorting or other optimizations commonly found, e.g., in
game engines were used.
Due to its dependencies, we, unfortunately, were unable to suc-

cessfully integrate Piko with our testbed. Instead, we evaluated their
open source reference implementation separately on a suitably con-
figured Linux system running on the same machine. Experiments
were carried out using the same test scenes. However, since the
Piko rasterization pipeline does not support clipping and will not
handle triangles that cross into the negativew space correctly, we
provide pre-clipped versions of all our test scenes to Piko. To not
give Piko an unfair advantage over other methods by having to pro-
cess fewer triangles, these pre-clipped scenes were constructed such
that clipped parts of each original scene triangle become separate
input triangles, which Piko can discard before rasterization.

7.2 Results
CUDARaster and Piko both focus on the rasterization part of the
pipeline and run the vertex shader on the entire vertex buffer in
advance, which reduces complexity of geometry processing signifi-
cantly. However, if only parts of the vertex buffer are referenced by
a draw call—which is common practice in video games—this may
result in considerable performance issues and even malfunctions
in practice. To enable a comparison, we merged all draw calls into
a single render call, pre-transforming all vertices and removing all
non-referenced vertices. All vertex shaders simply multiply the in-
put data with the identity matrix. A demonstration of the influence
of multiple draw calls is shown in Table 1. The performance results
summarized for each game, for a subset of resolutions and tested
architectures are shown in Table 3; selected scenes and standard
common test cases are given in Table 2.
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Table 1. Performance comparison for different number of draw calls in
ms for three specific test scenes on the GTX 780 Ti at 1920 × 1080. As
CUDARaster always runs the vertex shader on the whole vertex buffer, it
can achieve high performance when draw calls are merged into one. When
multiple draw calls reference subsets of the vertex buffer, performance can
quickly deter. The performance loss of our approach is only due to separate
draw calls leading to underutilization.

tw17 sh19 tr16

Triangles 0.3M 2.0M 5.2M
Draw Calls 81 512 446

CUDARaster single call 1.9 7.7 13.2
cuRE single call 9.3 44.9 87.2

CUDARaster multiple calls 31.0 707.1 1383.1
cuRE multiple calls 33.3 180.0 262.3

As expected, none of the software approaches reach the perfor-
mance of the hardware pipeline. CUDARaster stays within a factor
of 4–6, while cuRE manages to stay within about one order of mag-
nitude. Depending on the test case, restoring primitive order costs
up to 20% of performance. Quad shading may add little cost for
scenes dominated by big triangles, like in Sibenik, but may also add
up to 20% of overhead for scenes with many small triangles, like
more complex game scenes. The performance edge of CUDARaster
over our approach is not surprising, as it follows a sequential kernel
approach, which takes away the burden of scheduling and allows to
store data for blending and depth testing in shared memory. How-
ever, recall that a sequential kernel approach may lead to increased
memory consumption, as all intermediate data needs to be stored
in global memory (Fig. 10), leading to failure for large test cases,
like San-Miguel. Memory issues also quickly become evident with
larger resolutions; e.g., CUDARaster did not run in 4K (3840× 2160).
CUDARaster is furthermore dependent on optimizations targeting
the outdated Fermi architecture, execution on architectures more
recent than Kepler fails.
Although Piko follows a similar approach to CUDARaster and

does not consider clipping, blending, primitive order, or quad shad-
ing, their performance is significantly lower than CUDARaster. Com-
paring it to our approach without quad shading and without prim-
itive order, it can be seen that cuREw/o is usually between 1.2×
and 2× faster. Interestingly, our speedup on more recent architec-
tures is higher than on the GTX 780 Ti. Piko only achieves a better
average performance for Stone Giant, which we attribute to the
uneven distribution of small triangles in these scenes, which compli-
cates our load balancing. Piko also requires significant amounts of
memory and thus has issues with larger test scenes and resolutions
above 1024 × 786. Also, their approach requires the screen resolu-
tion and maximum number of input primitives to be hard-coded,
which allows for additional compiler optimizations, at the expense
of practical usability.

FreePipe always assigns one thread to each triangle and runs into
performance issues when triangles become larger. Moreover, it does
not support blending, primitive order or quad shading. The only
scene that achieved good performance is Buddha, which consists of

Table 2. Frame time for selected scenes inms at 1024×768 for Buddha (bud),
Fairy Forest (fry), San-Miguel (san), Sibenik (sib), and four game scenes.

bud fry san sib tr12 tw12 sh23 sg13

G
TX

10
80

OpenGL 1.1 0.2 7.5 0.1 2.9 2.3 0.8 0.4
OpenGLf i 1.2 0.3 7.5 0.1 4.0 3.9 2.1 0.9
CUDARaster
cuRE 7.8 2.8 35.8 1.6 28.4 39.9 16.8 6.4
cuREw/q 5.4 2.4 29.2 1.4 24.0 21.5 14.8 6.1
cuREw/p 8.3 2.8 35.5 1.4 25.3 37.9 14.2 5.8
cuREw/o 5.5 2.3 28.0 1.4 20.9 19.4 12.1 5.4
Piko 8.4 3.6 44.0 2.9 37.1 25.1 12.5 7.7
FreePipe 0.8 72.3 292.7 68.1 261.3 66.2 141.4 145.0

G
TX

78
0
Ti

OpenGL 1.8 0.4 12.3 0.2 5.1 3.4 1.4 0.8
OpenGLf i
CUDARaster 4.2 2.1 1.5 20.1 14.3 7.1 4.6
cuRE 23.1 8.0 143.3 4.8 88.9 95.2 37.4 18.3
cuREw/q 17.1 7.4 105.7 4.1 70.7 56.9 33.8 16.7
cuREw/p 23.6 7.8 143.7 4.3 82.8 93.5 31.1 16.7
cuREw/o 16.9 7.0 95.6 3.6 63.5 50.4 28.3 16.7
Piko 19.4 8.5 7.5 89.9 62.3 28.9 19.8
FreePipe 2.1 156.3 149.1 903.6 182.5 463.8 492.4

many evenly small triangles. In all other cases the performance gap
is 1–2 orders of magnitude, and, for larger test scenes, FreePipe just
times out. As FreePipe does not store any intermediate data, it uses
the minimal amount of memory.
Overall, cuRE achieved the most consistent performance, being

the only approach apart from OpenGL that completed all test cases
in all resolutions on all architectures. It is the only approach that im-
plements an entire pipeline with full geometry processing, primitive
order, quad shading and appropriate blending. cuRE automatically
works with low memory requirements, even if larger buffers are
allocated (Fig. 10). In comparison to CUDARaster and Piko, which
need to store all intermediate data in global memory, the stream-
ing design of cuRE operates with very small intermediate buffers,
demonstrating only a slight overhead compared to OpenGL. Our
queue sizes can—to a certain extent—be chosen freely. For exam-
ple, in tr21, the index queues reached a fill-level of 97%, but never
overflowed. When queues fill up, our approach simply does not
run geometry processing, leading to idle blocks waiting for other
rasterizers to complete their workload. Obviously, this can reduce
performance, but guarantees correctness. Note that Piko must be
pre-configured to a fixed buffer size for all data, which we chose
at 75% of the GPU memory to allow a maximum number of scenes
to complete. However, the amount of memory was not enough for
many scenes, like, San-Miguel. Piko has no feature to track fill levels.
To quantify how similar in behavior the different approaches

are to the hardware graphics pipeline, we computed the Pearson
correlation coefficient between OpenGL and the tested methods
over the entire test body. On the GTX 1080 Ti, cuRE achieved cor-
relations of .80 and .94, Piko .69 and 0.70, and FreePipe .50 and
.67 with OpenGL and OpenGLf i , respectively. On the GTX 780 Ti,
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Table 3. Summary results in ms for our entire test body of more than 100 test cases. Next to OpenGL, cuRE is the only approach that completed all test scenes
on all architectures and resolutions. In most cases, there is a clear ordering among the software approaches with same capabilities: CUDARaster is faster than
cuRE, and cuREw/o is faster than Piko (with the exception of sg on the 780 Ti); Piko is faster than FreePipe. Comparing relative performance, our approach
performs better on newer architectures and even achieves real-time framerates in 4K resolution for most games.

1024 × 768 1920 × 1080 3840 × 2160
de tr sg sh tw de tr sg sh tw de tr sg sh tw

G
TX

10
80

OpenGL 0.4 1.4 0.2 0.8 0.9 0.5 1.8 0.5 0.9 1.0 1.3 3.5 1.7 1.4 1.7
OpenGLf i 0.6 2.1 0.7 1.2 1.4 1.3 3.5 1.6 1.6 2.1 4.0 10.5 5.5 3.6 4.8
CUDARaster
cuRE 5.5 16.8 5.5 10.2 13.0 9.8 27.2 11.3 13.3 16.8 25.1 59.7 33.7 27.3 33.8
cuREw/q 5.0 14.5 5.3 8.2 10.3 9.2 25.1 11.1 11.4 14.4 24.4 57.4 33.3 25.3 31.4
cuREw/p 5.1 15.3 5.1 9.3 11.6 9.0 25.1 10.5 12.0 14.7 23.5 54.9 32.0 24.3 29.6
cuREw/o 4.5 13.0 4.8 7.3 8.8 8.4 22.6 10.2 10.0 12.2 22.5 51.8 31.3 22.1 26.6
Piko 13.2 21.8 5.8 9.3 12.3
FreePipe 146.4 197.3 143.6 136.9 74.4 386.1 522.6 376.7 354.3 196.4

G
TX

78
0
Ti

OpenGL 0.7 2.5 0.6 1.3 1.6 1.2 3.6 1.3 1.7 2.0 3.8 9.2 4.9 3.4 4.1
OpenGLf i
CUDARaster 3.7 10.7 3.6 5.9 7.4 6.8 7.5 8.3 10.3
cuRE 15.8 48.0 16.1 27.0 34.3 24.7 65.9 27.8 36.5 46.3 67.1 179.8 92.3 75.8 95.1
cuREw/q 14.1 40.4 15.5 21.1 27.5 22.4 57.5 26.6 30.5 38.0 64.0 168.9 90.5 67.9 84.9
cuREw/p 15.0 44.6 14.8 25.1 32.0 22.9 59.9 25.5 33.8 41.0 61.6 162.8 85.4 68.0 83.5
cuREw/o 13.2 36.3 13.9 18.8 24.3 20.4 50.6 24.5 27.5 32.8 58.7 150.5 84.1 59.0 72.3
Piko 28.2 13.0 22.1 28.1
FreePipe 440.2 635.1 389.4 412.7 200.0

the correlation coefficients with OpenGL are significantly higher,
with cuRE achieving .94, CUDARaster .92, Piko .97 and FreePipe .31.
OpenGLf i is not supported on the GTX 780 Ti. These results show
that, especially for more recent architectures, the performance of
cuRE is predictably similar to the hardware pipeline. In case the
hardware is forced to use interlocked framebuffer access, the relative
performance matches particularly closely (up to 0.95), while other
approaches stay below 0.70.

8 PERFORMANCE ANALYSIS
Fig. 11 shows a detailed performance breakdown of how much pro-
cessing time is spent in each stage on each multiprocessor for a
typical scene on a GeForce GTX 1080. We compare the load balanc-
ing capabilities of different methods of rasterizer assignment for
three different workloads: simple lambert shading, an expensive
vertex shader with a trivial fragment shader, and a trivial vertex
shader with an expensive fragment shader. As simulated shader
load, we use 16 octaves of simplex noise [Perlin 2001] to compute a
per-vertex color or fragment color respectively. In addition to static
rasterizer assignment with a diagonal or offset pattern according
to Kerbl et al. [2017], we also implemented an alternative version of
the megakernel in which rasterizer blocks are dynamically assigned
to rasterizer queues. Exclusive ownership is guaranteed by requiring
each block to acquire ownership of the queue it intends to process
through a locking mechanism. The scheduling algorithm checks the
number of elements available in all rasterizer queues and attempts
to acquire a queue starting from the largest one in descending or-
der. This approach will potentially yield better load balancing at

increased scheduling overhead due to the need to search multiple
queues to find work.
Overall, runtime is clearly dominated by blending unless very

expensive shaders are used, which is one area in which CUDARaster
gains an advantage, since it can perform blending in shared memory.
The offset pattern yields slightly better performance over the simple
diagonal pattern in the scene used here. Increasing the vertex load
causes the relative significance of the slightly better load-balancing
of the offset pattern to vanish. Interestingly, both static approaches
turn out to be faster under higher vertex load, which we can only
explain as a result of the increased latency-hiding potential and
decreased resource contention due to higher arithmetic load leading
to an overall reduced pipeline overhead. In cases where a differ-
ent pattern cannot yield much improvement for static rasterizer
assignment anymore, dynamic rasterizer assignment can sometimes
still achieve a significant increase in performance. However, given
a heavy vertex load, dynamic rasterizer assignment loses to both
static variants as diminishing returns from better load balancing
cannot outweigh the inherently larger scheduling overhead of the
dynamic method.
As a general observation, the difference between pipeline im-

plementations tends to shrink with increased shading load as the
relative system overhead becomes more and more insignificant com-
pared to the shading work. This holds true even when comparing
our approach to OpenGL drawing the same scene with equivalent
shaders. With very heavy fragment load (32 octaves of simplex
noise), we are only a factor of about 2.5× slower than OpenGL from
initially a factor of more than 10 with trivial shaders. Both, cuRE
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Fig. 11. Detailed performance breakdown for the scene sh08 on the GTX 1080, showing the time spent in each stage on each multiprocessor. We compare
static rasterizer assignment with diagonal and offset patterns as well as dynamic rasterizer assignment for simple lambert shading as well as vertex and
fragment-heavy workloads.

as well as OpenGL behave in similar ways as the shading load is
moved around. We could not identify an individual bottleneck that
could be attributed with being responsible for most of the the per-
formance gap between software and hardware. Considering all of
the above, we come to the conclusion that the main limiting factor
for a software graphics pipeline is simply a generally higher base
overhead across all parts of the system.

Unsurprisingly, the rasterizer queues and, especially, the triangle
buffer are responsible for a significant portion of the global memory
traffic. It is notable that at 4K resolution, they still contribute about
70% of the total memory transactions in typical scenes. However,
more than 70% of the queueing traffic and more than 95% of queue
management atomics hit the L2 cache. We have seen indication that
there might be potential to improve the triangle buffer memory
access pattern, which currently seems to be a main source of scat-
tered writes. Heavier shading loads somewhat relief pressure on the
queueing system and achieve slightly improved cache hit rates.

On the Pascal GPU, the best configuration we could find was run-
ning at 50% occupancy with two blocks per multiprocessor and 16
warps per block. We achieve an issue efficiency of 25–30%, with the
majority of stalls (about 40%) caused by inter-warp synchronization.
Almost all of these stalls are observed in the scheduling logic; only

a few percent are owed to rasterizer queue sorting and framebuffer
access. Memory latency is responsible for only about 20% of stalls.

9 EXPERIMENTAL PIPELINE MODIFICATIONS
To demonstrate the merits of having a fully-programmable graph-
ics pipeline that can be completely customized for an individual
application, we implemented a number of pipeline modifications.
First, we extended the pipeline by a custom shader stage to en-
able programmable primitive topology. Further examples consider
programmable blending and its many applications, ranging from
medical visualizations to 2D graphics and document display. We
also show how some minor modifications to the rasterizer stage can
enable direct wireframe rendering as well as efficient rendering of
adaptively subsampled images.

9.1 Custom primitive types
A water surface, as depicted in Fig. 1a, is commonly created from
a regular grid of vertices animated by a wave function. To draw
the surface, these vertices are typically triangulated in a regular
fashion. Such an approach can lead to artifacts like the ones seen in
Fig. 12a, where some edges significantly deviate from the contour
of the height field. To solve this problem, we simply make our input
and primitive assembly stages programmable by two new types of
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(a) regular triangulation (b) adaptive triangulation

Fig. 12. By making the primitive assembly stage of our pipeline pro-
grammable, we enable an application to define its own primitive types.
(a) A height field such as the water wave depicted here would traditionally
be drawn using a static index buffer, forming triangles according to a regular
pattern which can lead to artifacts, such as the “zigzag” shape along the
crest of the wave, where edges are forced to go against the contour of the
underlying wave function. (b) By introducing a new, adaptively triangu-
lated quad primitive type, we achieve a much better mesh that dynamically
accommodates to an animated height field at almost negligible cost.

shader: a primitive assembly shader and a primitive triangulation
shader. The primitive assembly shader enables custom primitive
types by defining which vertices of the input stream form a prim-
itive. By adding this stage, the distinction between indexed and
non-indexed primitives essentially becomes obsolete—the shader
programmer can decide whether to load vertex indices from a mem-
ory buffer, evaluate a sequence based on the primitive index, or
perform some even more general computation. Once vertices have
been fetched and passed through the vertex shader, the primitive
triangulation shader is used to determine how a primitive is split
up into triangles for rasterization.

We require the primitive assembly shader to statically declare how
many output triangles a primitive will generate for our geometry
processing to continue to work using one thread per triangle. The
primitive triangulation shader is run in parallel by all the threads
allocated for the processing of the primitive’s output triangles. We
use these parallel invocations to compute a score for each potential
triangulation of the primitive. The primitive assembly stage simply
chooses the triangulation which returns the smallest score.

To render thewater surface, we define a primitive assembly shader
for a new adaptive quad primitive type, which takes four vertices
from the input stream to produce two triangles. The corresponding
primitive triangulation shader computes an energy term based on
the deviation of the face normals from the vertex normals, which
are computed from the wave function in the vertex shader. The
pipeline chooses the triangulation that minimizes this energy term,
leading to dynamic mesh adaptation (Fig. 12b) at only a very small
additional cost (≈ 0.1ms on a GeForce GTX 1080). To achieve the
same effect with the hardware pipeline would require updating the
index buffer in an additional pass before rendering each frame.

9.2 Direct wireframe rendering
Another example of the power of a pure software approach can be
seen in the wireframe overlays in Fig. 12. Rendering such images

(a) normal (b) color burn

(c) screen (d) hard light

Fig. 13. Many of the numerous different blend functions commonly used in
2D graphics are not supported in hardware. Our software graphics pipeline
can be modified to implement any desired blend function. This example
shows a vector graphic rendered by our software pipeline using (a) normal,
(b) color burn, (c) screen, and (d) hard light blending.

using a conventional hardware graphics pipeline would either re-
quire two passes with state changes in-between, where additional
measures such as a slope-scaled depth bias have to be taken to
avoid artifacts, or rely on fragile tricks involving the use of geom-
etry shaders and additional interpolators [NVIDIA 2007]—all just
to reconstruct information in the fragment shader that is already
available in the rasterizer. Since we have full control over all aspects
of the pipeline, we can modify the rasterizer to pass information
like barycentric coordinates and the screen-space distance from the
fragment to each edge to the fragment shader. With this information,
the wireframe can be incorporated directly into the fragment shader
at virtually no overhead.

9.3 Programmable blending
Since our graphics pipeline already performs blending in software,
it is trivial to add another shader stage through which an appli-
cation can define its own blend function instead of being limited
to a set of predefined hardware functions. Fig. 13 depicts results
of a vector graphics renderer based on the method described by
Loop et al. [2005] with support for the full set of blend functions
specified in the portable document format (PDF) standard [ISO 2008].

9.4 Adaptive subsampling
As display resolutions keep increasing, it gets harder for modern
applications to render high-quality content quickly enough to main-
tain a minimum desired frame rate at full resolution. This problem
becomes even more pronounced in Virtual Reality, which requires
very high resolutions, while, at the same time, motion-to-photon
latency must be kept low. A popular strategy to cope with this issue
is checkerboard rendering. To save computation, rendering of every

ACM Trans. Graph., Vol. 37, No. 4, Article 140. Publication date: August 2018.



140:14 • Kenzel, M. et al.

other pixel is skipped following a checkerboard pattern, thus produc-
ing a subsampled image at ideally twice the speed. A reconstruction
filter is then applied to upsample the result to full display resolu-
tion. A more sophisticated, adaptive approach for VR applications
combines checkerboard rendering with foveated rendering [Vla-
chos 2016]. Based on eye-tracking information, a small area around
the user’s current gaze point is rendered in full resolution, while
resorting to checkerboard rendering for the remaining areas.
Implementations using the hardware graphics pipeline have to

rely on discarding fragments in the fragment shader to achieve adap-
tive checkerboard rendering. The downside of such an approach,
especially with long-running fragment shaders, is that it inherently
leads to suboptimal GPU utilization, as half the threads in a warp
executing fragment work are idle most of the time: Half the threads
perform a discard and exit immediately, while the other half runs the
fragment shader to completion. Another problem is caused by the
fact that the GPU performs pixel quad shading. To get any benefit
at all, a checkerboard pattern with 2 × 2 pixel squares has to be cho-
sen, as, otherwise, any skipped pixel threads would still be forced
to execute the full fragment shader branch, while acting as helper
threads for their pixel quad. Using a 2 × 2 pixel pattern, however,
has a diminishing effect on the quality of the upsampled image.
In our software pipeline, we could instead modify the coverage

mask of each tile to skip the fragment shader before it is even sched-
uled. Therefore, we introduce the coverage shader, a new type of
shader which is called for each tile after the rasterizer has computed
the coverage mask. Using a coverage shader, an application can
programmatically modify the coverage mask of each tile before the
fragment shader is dispatched. In the case of adaptive checkerboard
rendering, we use a coverage shader that simply computes the dis-
tance of each tile from the user’s gaze point. If a tile falls in the
area where the user is currently looking, we pass on the coverage
mask computed by the rasterizer unchanged. Otherwise, we com-
bine the coverage mask using a bitwise logical AND with a bitmask
representing the checkerboard pattern to use.
By using the coverage shader, instead of discarding fragments

in the fragment shader, we can avoid the overhead of invoking the
fragment shader for pixels that should be skipped altogether and
achieve significantly better GPU utilization, since only fragment
threads that will produce an output are going to be scheduled. In
addition, our software pipeline allows us to turn off quad shading
when not required by the application, e.g., in case screen-space
derivatives are not used or can be computed analytically. Alterna-
tively, the rasterizer could also be modified to perform quad shading
across the diamond-shaped fragment neighborhood given by the
checkerboard pattern. In any of these cases, we can switch to a 1× 1
pixel square checkerboard pattern, which achieves better image
quality at the same cost. For the scene depicted in Fig. 14, adaptive
checkerboard rendering using a discard in the fragment shader is
more than 30% faster than rendering at full resolution. Using the
coverage shader led to another performance increase of more than
30%. The 1 × 1 pixel pattern achieved a 22% smaller mean squared
error to the full resolution rendering while running at the same
speed as the 2 × 2 pixel pattern, when quad shading is off.

(a) 1 × 1 pixel pattern (b) 2 × 2 pixel pattern

Fig. 14. Using our programmable coverage shader stage, we can implement
adaptive checkerboard rendering without the inefficiencies of the conven-
tional approach based on discarding fragments. The images above show a
scene captured from the game Total War: Shogun 2 rendered with adaptive
checkerboard rendering using (a) 1 × 1 and (b) 2 × 2 pixel squares.

10 CONCLUSION
We have demonstrated that a standard graphics pipeline imple-
mented entirely in software can achieve real-time rendering per-
formance for real-world scenes on a GPU today. The flexibility of
a software approach opens up interesting possibilities in the form
of application-defined graphics pipelines tailored directly to a spe-
cific task. Performance results established over more than 100 test
scenes show rendering speeds for our approach within one order of
magnitude of the hardware graphics pipeline. We are also within
a factor of approximately three of CUDARaster while enabling a
bounded-memory, end-to-end streaming implementation with a
fully-compliant vertex processing stage that is portable across all
current CUDA hardware architectures. We are considerably faster
than Piko while at the same time addressing core issues such as
primitive order, clipping, and screen-space derivatives. Our stream-
ing graphics pipeline was the only approach next to the OpenGL
reference able to complete all test cases in all resolutions on all
graphics cards.
While a software implementation will never replace an equiva-

lent hardware graphics pipeline when it comes to raw speed and
efficiency, we see an interesting prospect in graphics hardware grad-
ually adding support for software pipelines alongside the traditional
hardware pipeline. By doing so, future GPU architectures could
cover both ends of the spectrum and give applications a choice to
use the programmable hardware pipeline for maximum efficiency
or a hardware-accelerated software pipeline in cases where such a
more flexible approach better fits the task at hand. Given sufficient
hardware support in key places, the overhead of a software render-
ing pipeline may ultimately be amortized in certain applications
by enabling a more straightforward implementation of rendering
algorithms in a custom graphics pipeline. The hardware cost of
adding this support would likely be limited, as many of the de-
sirable features such as highly-optimized framebuffer operations
and high-performance scheduling logic are already present in the
hardware.

An important open question is what the interfaces through which
such hardware support would be exposed to software should look
like. We believe that a software pipeline implementation such as
ours, which is similar in design and behavior to the hardware
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pipeline, may proove to also be a powerful tool in attacking prob-
lems such as this one. Even with a pure software system like the one
we presented, there is a need for a proper interface between pipeline
and application. Particular strength of a software approach in this
regard lies in the fact that the boundary between graphics pipeline
and application can be moved around freely which facilitates rapid
exploration of different ideas.
For future work, we plan to further develop our implementa-

tion into a Direct3D12-class graphics pipeline with support for
tessellation, and experiment with more complex pipeline extensions.
Ultimately, we seek to generalize our approach to allow arbitrary
streaming graphics pipelines to be expressed in a way that facilitates
the synthesis of an efficient GPU implementation from an abstract
pipeline model.

As a service to the community, we have made our implementation
available as open source: https://github.com/GPUPeople/cuRE.
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