
Whippletree: Task-based Scheduling of Dynamic Workloads on the GPU

Markus Steinberger∗ Michael Kenzel∗ Pedro Boechat∗ Bernhard Kerbl∗ Mark Dokter∗ Dieter Schmalstieg∗

Graz University of Technology, Austria

Building
Descriptions

Renderable
Geometry

Grammar
Evaluation

Geometry
Generation

Supersampled Image

Primitives

Shade

Dice and
Sample

Split

Bound
Camera

Movement

Pixel
Update

Cache
Update

Cache
Creation

Raycasting

Cache
Entry

Cache
Update

Figure 1: Complex rendering pipelines, such as procedural city generation (left), Reyes rendering (middle) and volume rendering with
irradiance caching (right) can be implemented effectively based on Whippletree and its task-based programming model. In all three examples,
we were able to significantly increase performance.

Abstract

In this paper, we present Whippletree, a novel approach to schedul-
ing dynamic, irregular workloads on the GPU. We introduce a new
programming model which offers the simplicity and expressiveness
of task-based parallelism while retaining all aspects of the multi-
level execution hierarchy essential to unlocking the full potential of a
modern GPU. At the same time, our programming model lends itself
to efficient implementation on the SIMD-based architecture typical
of a current GPU. We demonstrate the practical utility of our model
by providing a reference implementation on top of current CUDA
hardware. Furthermore, we show that our model compares favorably
to traditional approaches in terms of both performance as well as
the range of applications that can be covered. We demonstrate the
benefits of our model for recursive Reyes rendering, procedural ge-
ometry generation and volume rendering with concurrent irradiance
caching.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Parallel processing I.3.6 [Computer Graphics]:
Methodology and Techniques—Languages;

Keywords: GPU, scheduling, parallel computing, megakernel,
persistent threads, Dynamic Parallelism

Links: DL PDF WEB CODE

∗e-mail: steinberger@icg.tugraz.at, kenzel@icg.tugraz.at,
boechat@icg.tugraz.at, kerbl@icg.tugraz.at, dokter@icg.tugraz.at,
schmalstieg@icg.tugraz.at

1 Introduction

Today’s graphics processing unit (GPU) has evolved from special-
purpose, fixed-function hardware into a fully programmable, mas-
sively parallel processor with thousands of processing cores. Har-
nessing this processing power is key in a wide range of applications.
While applications generating static, parallel workloads naturally
lend themselves to execution on the GPU, irregular workloads can
usually not be effectively mapped for efficient GPU execution. Thus,
we see an imminent need for a programming model that lends itself
to high performance GPU execution of dynamic, irregular workloads.
To achieve high performance, such a programming model must take
into account the special characteristics of parallel execution on the
GPU.

Parallel execution on the GPU is organized into a three-level hierar-
chy. At the lowest level, small groups of cores operate in a single
instruction, multiple data (SIMD) fashion. While it is possible for
control flow within the same SIMD group to take different branches,
execution of these branches has to be serialized, leading to a condi-
tion known as thread divergence. At the intermediate level, multiple
SIMD groups are organized into a streaming multiprocessor (SM).
Each SM contains a small amount of fast local shared memory acces-
sible to all SIMD groups on the SM. At the top level, the GPU itself
consists of multiple SM units and is connected to global graphics
memory. Two programming models are prevalent on this hardware:
shading languages and compute languages.

Using shading languages such as GLSL or HLSL, parts of the other-
wise fixed graphics pipeline can be programmed. Scheduling of the
graphics pipeline on the parallel execution cores of the GPU is taken
care of by opaque, special-purpose hardware. The simplicity and
efficiency of this programming model, however, comes at the cost
of being confined to the rigid pipeline structure. A substantial part
of the implementation effort associated with advanced rendering
techniques goes into circumventing the limitations of the graphics
pipeline, e. g., by making clever use of multipass rendering.

Compute languages such as CUDA or OpenCL depart from the
notion of a graphics pipeline and present a data-parallel program-
ming model: A kernel function is launched on the GPU where is it
executed by a large number of threads. Threads are grouped into
so-called warps, which are scheduled for execution on the SIMD
groups of an SM following a time and space multiplexing scheme.

http://doi.acm.org/10.1145/2661229.2661250
http://portal.acm.org/ft_gateway.cfm?id=2661250&type=pdf
http://www.icg.tugraz.at/project/parallel
http://www.icg.tugraz.at/project/parallel/downloads
mailto:steinberger@icg.tugraz.at?subject=Whippletree: Task-based Scheduling of Dynamic Workloads on the GPU
mailto:kenzel@icg.tugraz.at?subject=Whippletree: Task-based Scheduling of Dynamic Workloads on the GPU
mailto:boechat@icg.tugraz.at?subject=Whippletree: Task-based Scheduling of Dynamic Workloads on the GPU
mailto:kerbl@icg.tugraz.at?subject=Whippletree: Task-based Scheduling of Dynamic Workloads on the GPU
mailto:dokter@icg.tugraz.at?subject=Whippletree: Task-based Scheduling of Dynamic Workloads on the GPU
mailto:schmalstieg@icg.tugraz.at?subject=Whippletree: Task-based Scheduling of Dynamic Workloads on the GPU

Blocks are groups of warps running on the same SM. Therefore, all
threads in a block can communicate through the shared memory on
their SM.

Much research has recently been devoted to using compute lan-
guages to implement software rendering pipelines that cannot ef-
fectively be expressed using shading languages. Examples include
raytracing [Parker et al. 2010], Reyes rendering [Zhou et al. 2009],
and multi-fragment effects [Liu et al. 2010]. However, both shading
languages and compute languages are arguably far from ideal for
these purposes. A programmable pipeline should be allowed to fol-
low arbitrary, potentially cyclic, execution graphs [Sugerman et al.
2009]. We identify the following features required of a programming
model to effectively deal with dynamic irregular workloads:

Multiprogramming, i. e., a multiple instruction, multiple data
(MIMD) model, to allow simultaneous execution of multiple pipeline
stages. A MIMD model is essential for exposing parallelism which
is needed to fully utilize current GPU hardware. Compute languages
force every dynamic pipeline to be broken into individual kernels
instead of multiplexing multiple stages, in spite of the hardware
offering fully independent SM units.

Dynamic work generation. To model recursive pipelines, one
needs to be able to dynamically launch new work from GPU code.
Efficient scheduling of such dynamic and potentially irregular work-
loads calls for automatic load balancing.

Data locality. Data should be forwarded from one pipeline stage to
the next through shared memory whenever possible. When pipeline
stages are implemented in separate kernels, such forwarding is
not possible, since shared memory is not persistent across kernel
launches.

Support for different kinds of parallelism. The work to be done in
different pipeline stages may offer different opportunities for parallel
processing. One stage may process a large number of independent
data elements in parallel, while in another stage, multiple threads
could work on the same element.

While many researchers have gone into addressing the problem
of multiprogramming and dynamic work generation, data locality
received only little attention. No work to date offers efficient sup-
port for different kinds of parallelism. In this paper, we introduce
Whippletree, a new approach to task-based parallelism on the GPU,
which is the first to address all of the above issues in a single solution.
The main contribution of Whippletree is its fine-grained resource
scheduling and its ability to exploit sparse, scattered parallelism.
Complex branching or recursive graphics pipelines as well as algo-
rithms processing hierarchical data structures can be scheduled such
that SM units are efficiently filled with coherent workloads. More-
over, the Whippletree model allows full MIMD task-parallelism
without problematic interleaving of multiple kernels. Tasks can be
created dynamically and scheduling considers data locality.

We demonstrate that Whippletree is very efficient by studying the
performance of recursive, tree, and pipeline algorithms. We com-
pare our implementation to successive kernel launches as well as a
scheduling approach built on top of NVIDIA’s Dynamic Parallelism.
These comparisons demonstrate that our implementation is the most
efficient approach when handling fine-grained parallelism. Finally,
we discuss three application examples: Reyes rendering, irradiance
caching for volume rendering, and procedural geometry generation
on the GPU, which would be hard to implement on currently existing
programming models (Figure 1).

Figure 2: A persistent megakernel model combines scheduling from
a queue implemented in software with persistent worker threads
running in a loop until the queue is empty. During execution, new
work can be placed in the queue.

2 Related work

We first review traditional GPU compute languages. When launching
a kernel, an execution configuration has to be specified, defining the
number of threads per block as well as the number of blocks. This
configuration remains fixed for the duration of the kernel. A multi-
stage algorithm or pipeline must be split into individual kernels. The
output of one kernel usually serves as input for the next.

This model is inefficient for irregular workloads: First, a dependent
kernel can only be launched after the previous kernel has finished.
Thus, a small number of long-running threads can cause significant
delay. Second, all data forwarded from one kernel to the next must
be passed through slow global memory. Third, a change of execution
configuration requires a new kernel launch. Instruction to launch a
kernel is given by application code running on the CPU. If the exe-
cution configuration for one kernel depends on results of a previous
kernel launch, CPU-GPU synchronization and a memory transfer
from graphics memory to system memory becomes necessary.

Persistent threads Many limitations of current compute lan-
guages are inherent to the programming model rather than actual
limitations of the hardware. Consequently, improving the program-
ming model has received much attention. One important solution
to support dynamic work generation is the persistent threads ap-
proach [Aila and Laine 2009]. A single kernel keeps each SM
continuously occupied. All threads spin in a loop and draw new
work items from a software queue in each iteration. New work can
dynamically be generated by simply pushing items into the queue.

The key to efficient scheduling in software is a fast queue implemen-
tation. A system can only handle dynamic workloads, if the queue
supports simultaneous enqueue and dequeue operations. Unfortu-
nately, contention from many threads can quickly make the work
queue become a major bottleneck. Multiple distributed queues, e. g.,
one per SM, can be used to mitigate contention. To achieve load
balancing in such a setup, work stealing [Cederman and Tsigas 2008;
Chen et al. 2010; Chatterjee et al. 2011] or work donation [Tzeng
et al. 2010] can be used.

Further improvements include exploiting producer-consumer locality
via local shared memory [Satish et al. 2009; Breitbart 2011; Yan
et al. 2013]. The persistent threads model can further be extended to
support GPU-wide synchronization via message passing [Stuart and
Owens 2009; Luo et al. 2010; Xiao and Feng 2010] and dynamic
priorities [Steinberger et al. 2012].

Megakernels Ubershaders [Hargreaves 2005] work around the
limitation that only a single graphics pipeline configuration can
active at any time. All potentially required functionality is put

into one big shader program that branches to different subroutines
based on the input data. The equivalent concept in the context of
compute languages is called a megakernel. Thread divergence can
become a major issue in such an approach. Stream compaction
techniques [Hoberock et al. 2009] try to avoid this problem by
sorting before megakernel execution. In a persistent megakernel, all
threads run in a loop, draw some work from a queue, and branch to
the corresponding subroutine (Figure 2).

The choice of the number of threads processing each element drawn
from the queue has a defining influence on the properties of the
resulting system. Distributing items to individual threads can lead to
severe thread divergence and prevents features like shared memory
from being used. Scheduling a whole warp or even block to work
on an item reduces thread divergence and lowers queue contention.
Optix [Parker et al. 2010], e. g., schedules warp-sized ray bundles
and uses heuristics to reduce divergence. Other approaches also use
warp-sized [Tzeng et al. 2010] or even block-sized [Chatterjee et al.
2011] work items.

Softshell [Steinberger et al. 2012] supports both, work items being
processed by individual threads as well as work items being pro-
cessed by a whole block simultaneously, making it the approach
most closely related to ours. While offering more flexibility than
previous systems, it is still quite restrictive. Good performance is
only achieved if a single block size is used, warp-level features are
not considered, and tasks are mixed up arbitrarily. Furthermore,
scheduling involves a high amount of slow dynamic memory allo-
cation and intermediate data structures, resulting in relatively slow
performance. Additionally, if different block sizes are used, idle
threads cause a significant performance drop.

Time-sliced kernels Laine et al. [2013] argue that thread diver-
gence poses a severe problem to megakernels and propose to use
time-sliced kernels (TSK) with dedicated queues per kernel instead.
TSK is only applicable to problems which can be efficiently sepa-
rated into individual stages. It also prevents taking advantage of data
locality as data needs to be forwarded from one kernel to the next
through global memory.

Dynamic Parallelism Dynamic Parallelism [NVIDIA 2012] al-
lows launching new kernels directly from code executing on the
GPU. However, in the current implementation the book keeping
necessary to track the kernel launch hierarchy seems to be a perfor-
mance limiting factor. Furthermore, in order to avoid blocking the
GPU, preemptive scheduling of blocks must be supported, which
in turn requires saving and restoring block-level execution contexts.
Finally, data communication between kernels has to go through slow
global memory.

As a reference implementation of our programming model, we
present the Whippletree Megakernel (WMK), an evolution of the
traditional megakernel concept. We compare WMK to TSK and an-
other scheduler based on Dynamic Parallelism. We demonstrate that
WMK outperforms both contenders on scenarios with heterogeneous
workloads, despite being a pure software implementation.

3 Programming model

The GPU is designed for maximizing throughput by latency hiding.
Each SM keeps many warps in flight. Whenever a warp has to wait
for a memory access, the SM switches to another warp. Fast context
switching is critical for this strategy to succeed, thus, the state of all
warps is kept directly on the SM. The number of warps in flight on
an SM is thus limited by the hardware resources available for storing
warp states, i. e., the size of the register file and shared memory.

Table 1: Overview of the three task types supported by our program-
ming model in decreasing order of the associated feature set. M
denotes the warp size of the device and B the maximum block size.

task type thread count feature set

level-0 2..M warp-level
level-1 M..B block-level
level-2 1 global

On each level of the GPU execution hierarchy, application code can
rely on a certain set of assumptions of decreasing strength. At the
lowest level, code executed in the same SIMD group can rely on
implicit synchronization due to lock-step execution, access to shared
memory, and special instructions for intra-warp communication.
One level above, code running on the same SM can still use shared
memory and barrier synchronization. At the highest level—across
multiprocessors—code may only use operations on global memory.

While previous approaches hide these special properties of the hard-
ware architecture from the user, we recognize the fact that taking ad-
vantage of the guarantees described above is essential for unlocking
the full potential of the GPU. To this end, we propose Whippletree,
a new programming model designed to bring the simplicity and
expressiveness of task-based parallelism to the GPU in a way that
does not limit performance.

To provide a powerful programming abstraction while still enabling
application code to take full advantage of the hardware, Whippletree
distinguishes three task types (Table 1):

level-0 tasks are multi-threaded tasks that must be executed by
threads of the same SIMD group. Thus, the implementation of
such a task can use warp-level features such as lock-step execution,
warp vote functions, register shuffle, as well as shared memory.
The number of threads (thread count) working on a level-0 task is
therefore limited by the warp size of the device. The thread count is
specified by the user when defining the task. For efficiency reasons,
multiple level-0 tasks of the same kind may be executed in the same
warp if possible. To achieve optimal grouping, a level-0 task’s thread
count should therefore be an integer factor of the warp size.

level-1 tasks are multi-threaded tasks where all threads are to be
executed on the same SM. Block-level features like shared memory
and barrier synchronization can be used. For efficient execution, the
thread count should be chosen to be a multiple of the warp size.

level-2 tasks are single-threaded tasks. Only GPU-wide features
such as global memory are supported. Thus, level-2 tasks can be
arbitrarily assigned to any SM. Multiple level-2 tasks of the same
kind may be grouped to fill up a warp, maximizing GPU utilization
while trying to keep thread divergence low.

The Whippletree programming model provides four basic building
blocks:

Work items define data elements to be processed during the execu-
tion of an algorithm.

Procedures provide the code that implements the processing of work
items. Each procedure declares the number of threads it requires to
process a single work item. Furthermore, it must specify its task type,
defining the set of features the code may be able to use. Procedures
are expected to terminate in a finite amount of time.

Tasks are created by specifying a work item and the procedure the
work item should be handed to. Whippletree takes care of scheduling
available tasks for execution in a way that respects the constraints
associated with the respective task type. During execution, a task
can dynamically spawn new tasks.

Programs are closed sets of procedures. A program must be self-
contained in the sense that any procedure in a program may only
spawn tasks for procedures also part of the program.

3.1 Programming interface

We created a reference implementation of Whippletree as a C++
template library in CUDA. Listing 1 shows a procedure implement-
ing one stage of a simple Reyes pipeline using our interface and
Listing 2 details on how this pipeline is put together and launched
on the host side.

Listing 1: Example demonstrating a Whippletree procedure im-
plementing the recursive split stage in a Reyes rendering pipeline
similar to the one presented in Figure 1 and Section 6.1. Note that
this is a simplified example where only two threads work together
on a small problem.

1 struct Quad {
2 Vertex v[4];
3 };
4
5 struct Split : public Procedure
6 {
7 typedef Quad WorkItem;
8 static const int NumThreads = 2;
9 static const int TaskType = WARP;
10 static const int SharedMemory = 0;
11
12 template<class Context>
13 __device__ static void execute(
14 int threadId, const Quad* quad, void* shared)
15 {
16 float3 mDist = quad.v[threadId+1] - quad.v[0];
17 float approxS = length(mDist);
18 float sizeX = Context::shfl(approxS,0);
19 float sizeY = Context::shfl(approxS,1);
20 Quad out;
21 if(sizeX > sizeY)
22 {
23 float3 v01 = quad.v[1] - quad.v[0];
24 float3 v23 = quad.v[3] - quad.v[2];
25 out.v[0] = quad.v[0] + 0.5f*threadId*v01;
26 out.v[1] = quad.v[0] + 0.5f*(threadId+1)*v01;
27 out.v[2] = quad.v[2] + 0.5f*threadId*v23;
28 out.v[3] = quad.v[2] + 0.5f*(threadId+1)*v23;
29 }
30 else
31 { ... }
32 if(out.size() > Splitthreshold)
33 spawn<Split>(out);
34 else
35 spawn<DiceAndSample>(out);
36 }
37 };

A user defines procedures by deriving a new class from Procedure
and declaring the task type and resources needed for execution such
as thread count and shared memory. The procedure also needs to
declare the type of its input work item, which can be an arbitrary
type—in this example a Quad. The code for the procedure is pro-
vided by implementing the execute() method template, which
is called from each thread executing the given task. The work item,
thread index, and a pointer to the shared memory region allocated
for the task’s execution are passed in as parameters. In this example,
two threads are being used to split an input quad along its longer axis
into two new quads—each generated by one thread. Functions of
the task-specific feature set, like barrier synchronization, are made

accessible through the type passed in the Context template argu-
ment. In this example, the shfl instruction is used to efficiently
exchange the computed quad dimensions. Finally, new tasks are gen-
erated for the Split or DiceAndSample procedures depending
on the quad dimensions.

Listing 2: Program specification and host code to initialize and run
a simple Reyes pipeline, which is partially defined in Listing 1.

1 struct SimpleReyesProgram : public
2 Program<Bound, Split, DiceAndSample, Shade> {};
3
4 typedef Whippletree<SimpleReyesProgram,
5 GlobalPerProcedureQueuing> ReyesPipeline;
6
7 struct QuadInit
8 {
9 typedef Quad* InputData;
10 __device__ static void init(
11 int threadId, InputData quads)
12 {
13 spawn<Bound>(quads[threadId]);
14 }
15 };
16
17 void initAndRunPipeline(Model& model)
18 {
19 ReyesPipeline reyes;
20 reyes.init<QuadInit>(model.num(), model.quads());
21 reyes.run();
22 }

On the host side, a program is put together by instantiating the
Program template with all necessary procedures. A runnable
ReyesPipeline is formed by combining the Reyes Program
with a scheduler implementation using the Whippletree tem-
plate. Before the pipeline can be executed by calling the run()
method, input work items must be created by calling the init()
method template of the Whippletree class. Similar to the con-
cept of a Procedure, the type specified as the template argument
to init() has to provide a method that is called to spawn the input
work items in parallel on the GPU. In this example, we simply spawn
a task for each quad of the model. Overall, the template-based design
not only allows us to enforce the constraints of the Whippletree task
model at compile time, but also enables potentially huge benefits
from static optimizations such as function inlining.

4 Implementation

In conjunction with the Whippletree programming model, we present
a scheduling approach that provides an efficient mapping of the
Whippletree programming model to current SIMD-based GPU ar-
chitectures: the Whippletree Megakernel (WMK). WMK supports
multi-programming of different tasks on top of CUDA. It respects
the constraints of different task types, while ensuring high perfor-
mance. Furthermore, we also propose easy-to-use mechanisms for
load balancing, data-locality-aware queuing, as well as configurable
scheduling strategies.

WMK inherits some traits from persistent megakernels. Blocks of
threads (worker-blocks) are launched to exactly fill up all multipro-
cessors. These worker-blocks execute a loop drawing tasks from
work queues. Procedures are implemented as branches in the main
loop. When new tasks are generated, they are inserted into the
queues. In this way, concurrent execution of multiple tasks, e. g.,
multiple stages of a pipeline, is supported. Load balancing between
worker-blocks is achieved through the work queues.

Figure 3: WMK consists of worker-blocks, continuously drawing
tasks from queues. We use one queue per procedure, which is essen-
tial for a divergence-free execution of different task types. During
execution, new tasks of any kind can be created.

4.1 Dynamic worker-blocks

Unlike persistent megakernels, WMK dynamically assigns available
threads to work on the incoming tasks. To support this feature, we
associate an individual queue with each procedure (Figure 3).

To have a sufficient number of idle threads available to start the
execution of any procedures, we synchronize all threads inside a
block at the beginning of each loop iteration. According to the
current scheduling strategy, a queue is chosen to retrieve tasks for
all threads. If this queue holds level-2 tasks, WMK tries to draw
one task for each thread. For level-0 tasks, we compute how many
tasks fit in a warp and try to fill up all warps in the worker-block.
For level-1 tasks, the easiest approach would be to draw a single
task and use just as many threads as needed for execution, while the
remaining threads are idle. This strategy would be very inefficient
for programs containing level-1 tasks of varying thread count. To
increase utilization, we execute multiple level-1 tasks concurrently
in the same worker-block. Similar to the execution of multiple level-
0 tasks, we draw as many level-1 tasks from the queue as can be
executed concurrently with the available number of threads.

Since multiple level-1 tasks are executed concurrently, the default
CUDA barriers, which synchronize the entire block, cannot be used.
Instead, WMK implements custom barrier synchronization on top of
the synchronization primitives found in NVIDIA’s PTX instruction
set. PTX allows the use of up to 16 named barriers to synchronize
an arbitrary number of warps. During execution, we use the barriers
1-15 and dynamically assign them to individual tasks. In this way,
a worker-block can dynamically assign threads to different tasks,
as shown in Figure 4. Application code can access this synchro-
nization function though the Context template argument. Further
functions accessible via the Context argument are warp voting
and register shuffle. These instructions cannot be directly mapped
to the underlying CUDA instructions either, as they have to work
on subsets of the threads in a block/warp. For example, voting for
level-0 tasks, uses warp votes, but selects only those parts of the
voting result that correspond to threads in the same level-0 task.

To maximize occupancy, the worker-block size should be chosen
to be the smallest common multiple of the thread counts of all
level-1 tasks. However, a first restriction to this choice comes from
the maximum block size supported by the hardware. Additionally,
tasks may use shared memory, which may further limit the block
size. As procedures are fused into one kernel, the static shared
memory requirements of all procedures would accumulate, which
may severely reduce occupancy. To prevent unnecessarily large

256 level-2 tasks

16 level-0 tasks
16 threads each

30 level-0 tasks
9 threads each

2 level-1 tasks
128 threads each

4 level-1 tasks
64 threads each

thread 0-127 bar 1 thread 128-255 bar 2

thread 0-63 bar 1 thread 64-127 bar 2 thread 128-192 bar 3 thread 193-255 bar 4

Figure 4: A worker-block of 256 threads dynamically assigns its
threads to the incoming tasks and allots individual barriers (bar) to
level-1 tasks while maximizing utilization.

shared memory requirements, we can exploit the fact that all threads
of a worker-block will always execute the same procedure. We
dynamically assign shared memory to tasks and thus enable reuse
of shared memory by different procedures. Still, the procedure with
the largest shared memory demands limits the usable block size.
Considering these constraints, we evaluate all possible worker-block
sizes and choose the one yielding the maximum utilization. These
steps are implemented using metaprogramming techniques to make
the decision at compile time.

4.2 Queue management and data locality

Our implementation builds on a configurable library of high-
performance queues, which are organized in a two level hierarchy.
In order to exploit data locality, a small amount of shared memory is
used to implement the top level of the hierarchy. Requests are always
answered by the top level queues if possible. To support load balanc-
ing among worker-blocks and SM units, the lower-level hierarchy
implements queues in global memory. For these global queues, we
use a queue similar to the one proposed by Steinberger et al. [2012].
These queues support concurrent insertion and removal.

Global queuing The global queues use a fixed-size ring buffer
with front and back pointers and overflow/underflow protection
counters. When a thread wants to add a task to the queue, it increases
the back pointer of the queue using atomic addition, allocating a slot
to this thread. Every slot is protected with an individual lock flag to
avoid read-before-write and write-before-read hazards. If the flag
indicates an empty slot, a thread can safely insert a task into that
slot and set the flag to ‘filled’ afterwards. When elements are to be
removed from the queue, the front pointer is atomically increased to
retrieve a filled slot. If the flag indicates that no task has been added
to the queue for this slot yet, the thread keeps polling the flag until
a task becomes available. Then it removes the task from the queue
setting the flag to ‘free’.

To reduce contention, we use warp votes to determine how many
threads in the warp want to enqueue a task. Then, a single thread
requests slots for all threads, before all threads write the newly
created tasks to the queue in parallel. This strategy automatically
leads to fast coalesced memory access.

Local queuing As round trips to global memory are costly, shared
memory queues are essential for high performance. Shared memory
is limited and might also be used during task execution, so these
queues must be rather small. After deciding the worker-block size,
we use the remaining shared memory for local queuing.

By default, we evenly distribute the memory among all queues, but
the queue sizes can also be configured manually. To achieve full
occupancy when drawing tasks from local queues, we require each

launch synchronize

read queue fill-level

launch synchronize launch

read queue fill-level

sync
CPU

GPU

Figure 5: TSK maps different procedures to separate kernels.
Queues do not need to support concurrent enqueue/dequeue. Data
between kernel launches has to be passed through global memory.
The CPU must read queue fill rates, before launching new kernels.

queue to be able to hold enough tasks to fill a worker-block. If there
is too little memory to achieve this goal, a heuristic can be used
to select which tasks should be backed by a local queue: starting
with the task that requires the least memory, we allocate queues with
minimal size, until there is no more space available.

4.3 Scheduling policies

Different scheduling policies can be employed to decide which
procedure to execute next. As the optimal choice of policy is
highly application-specific, we provide multiple predefined policies
and means for customization. Predefined policies include random
selection, round-robin scheduling, fixed priority scheduling, and
execution-time oriented scheduling.

With random selection, each procedure can be assigned a probability.
New tasks are drawn from the work queues according to the in
this way defined distribution. If the number of tasks available in
the chosen queue is too low to fill the worker-block, we choose
another procedure based on the remaining probabilities. In case
of round-robin scheduling, every worker-block stores information
about which procedure has been executed last and chooses the queue
associated with the next procedure during the following dequeue.

In fixed-priority scheduling, procedures with higher priority are
always chosen before lower priority procedures as long as they fill
up the worker block. Such a strategy aids in, e. g., keeping the
queue lengths short by draining elements from the back of a pipeline
by prioritizing procedures at the end of the pipeline. In execution-
time oriented scheduling, each procedure is assigned a time quota.
The overall time spent executing each procedure is monitored. The
procedure which is furthest from the desired quota is then chosen
during dequeue.

4.4 Alternative implementations

The Whippletree programming model is not restricted to the WMK
reference implementation. We provide two alternative scheduler
implementations that fulfill the Whippletree programming model:
time-sliced kernels (TSK) and hybrid dynamic parallelism (HDP),
both making use of efficient global queuing.

Time-sliced kernels (TSK) A common approach for support-
ing multiple tasks is calling separate kernels in turn. Similar to
Laine et al. [2013], we extend this approach by allowing every pro-
cedure to have a dedicated input queue (Figure 5). Because the
queues do not need to support concurrent enqueue and dequeue op-
erations, queuing can be implemented even more efficiently without

Controller

check check

Figure 6: Hybrid dynamic parallelism uses queues to collect tasks
for each procedure. A controller block periodically checks the
queues and launches new workers directly from the GPU.

the additional lock per queue slot. As each procedure is executed in a
separate kernel, the execution configuration can be individually cho-
sen to achieve the best possible occupancy. Furthermore, divergence
is also expected to be low. To achieve a good GPU utilization, even
if the queue fill-levels are low, all kernels can be issued into different
streams and thus be executed concurrently. Because new tasks can
be generated during execution, pipelines with cycles may require
multiple iterations of kernel launches, until the entire pipeline is
executed.

Hybrid dynamic parallelism (HDP) Dynamic Parallelism allows
launching new kernels from inside a kernel. However, the dimension
of a new kernel launch must be at least one block. Thus, we take
an approach similar to TSK by combining dynamically launched
kernels with individual queues for each procedure. These launches
are handled by a controller kernel which essentially takes on the
role of the CPU in TSK and launches new kernels until all queues
are empty. To this aim, it continuously checks the number of tasks
available in each queue. As soon as there are enough tasks to start
at least one warp, the controller forms as many blocks as possible
and launches them in a new worker kernel (Figure 6). Furthermore,
it keeps track of the number of blocks which have not started their
execution yet. If this number becomes low, the controller will also
launch partially filled blocks to make sure available processing cores
will be used and the program will eventually run to completion. As
tasks may concurrently be enqueued and dequeued, we use the same
queues for HDP as for WMK.

All three approaches have their distinct advantages and disadvan-
tages (Table 2). All techniques can collect level-2 and level-0 tasks
to fill entire thread blocks. While TSK relies on the CPU to control
execution, HDP and WMK operate in autonomy. A downside of
Dynamic Parallelism is that it must keep track of all dynamically
launched kernels, which, at least in current implementations, entails

Table 2: Comparison of our three different scheduler implementa-
tions: time-sliced kernels (TSK), hybrid dynamic parallelism (HDP),
and the Whippletree megakernel (WMK).

TSK HDP WMK

collect tasks per procedure • • •
GPU autonomy • •

no book keeping • •
optimal occupancy • •

inter-task synchronization •
adaptive scheduling •

fast local queuing •

significant book-keeping overhead. The separation of procedures
into different kernels as implemented by TSK and HDP has the ad-
vantage that each kernel can be optimized to achieve perfect register
and shared memory usage, which might lead to a better utilization.

Of all approaches, WMK has the richest feature set. It supports inter-
task communication and synchronization via message passing. Only
WMK can fully adjust its scheduling policy to the current needs:
Since it dequeues tasks directly before execution, it may select or
reorder tasks allowing arbitrary scheduling policies. HDP and TSK
can only slightly influence which task is being executed next, as
the hardware scheduler determines which thread block is chosen for
execution. WMK can use fast shared queues, while HDP and TSK
require all work items to be transmitted via global memory.

5 Performance analysis

We compare the performance of WMK to our two alternative sched-
ulers TSK and HDP. To assess the impact of local queues we also
compare a version of WMK that uses global queues only (WMKG).
We tested three synthetic benchmarks: a simple recursion, a tree
traversal and a multi-stage pipeline with strongly varying charac-
teristics. As simulated load, we executed a fixed number of fused-
multiply-add (FMA) operations or a fixed number of global memory
reads and writes, to simulate compute-bound and memory-bound
applications respectively. Furthermore, we included Softshell [Stein-
berger et al. 2012] (SFT) into our comparison, as it is closely related
to Whippletree. As SFT does not support level-0 tasks, we modeled
them with Softshell’s workpackage primitive. In the following, we
give an overview of the benchmark results. The complete results
can be found in the supplemental material. Our test system was
running Windows 8 on an Intel i7 CPU with 3.4GHz. All tests were
compiled using CUDA 5.5 and run on NVIDIA GTX 580, 680, and
TITAN cards, representing three different GPU generations.

Recursive algorithm To evaluate each technique’s task creation
and scheduling overhead, we simulate a simple recursive application
with level-2 and level-1 tasks. 38 000 initial tasks are processed and
re-spawned with linearly decreasing probability, which reaches 0%
at iteration 40. For every task, 512 FMA instructions or 64 memory
transactions are executed as simulated load.

The WMK variants delivered the best performance in all 12 tests,
achieving speedups up to 40× over SFT and 4× over TSK (Table 3).
As this test case only contains a single procedure, WMK does not
suffer from a suboptimal execution configuration. However, the
queues used in WMK (and HDP) are more complex, requiring four
additional registers and causing kernel occupancy to drop from 100%
to 75% when compared to TSK. Table 3 also lists the theoretical peak
performance. Memory access loads are closer to the theoretical peak
than FMA loads. While this might be due to the lack of instruction-
level parallelism in our simulated load, it also indicates that the
scheduling strategies do not demand excessive memory bandwidth.

WMK achieves the highest performance despite running at compara-
tively low occupancy, which suggests that the read-back and launch
overhead in TSK is significant. Queuing in shared memory boosts
performance significantly, especially on the GTX 680. While TSK,
HDP, and WMK perform reasonably well in all test cases, SFT is
between 3 to 40 times slower than the other approaches. The major
problem of SFT is the overhead of dynamic memory allocation and
virtual function calls, which significantly slows down scheduling.

Expanding tree In this example, we generate a rapidly expanding
tree structure. Each node has two children, which can be of any
of four node types. Each node type is associated with a different

Table 3: Recursive algorithm using level-2 and level-1 tasks with
FMA and memory access simulated load for SFT, TSK, HDP, WMK,
and WMKG, on the GTX 580, 680, and TITAN. HDP is only sup-
ported on the GTX TITAN. Performance provided in GFLOPS (for
FMA) and GB/s (for Mem).

580 680 TITAN
FMA Mem FMA Mem FMA Mem

theoretical perf. 1581 192.4 3090 192.2 4500 288.4

level-2

SFT 12.3 15.1 19.6 33.3 24.6 47.5
TSK 342.9 79.6 82.3 82.3 874.1 120.9
HDP - - - - 636.8 106.7
WMKG 404.0 88.5 43.0 48.4 1005.0 147.9
WMK 559.6 114.6 147.9 131.6 934.0 150.5

level-1

SFT 273.7 43.5 66.9 14.9 295.4 54.5
TSK 878.1 117.9 268.6 60.0 919.8 139.9
HDP - - - - 881.0 123.6
WMKG 884.5 126.4 270.5 71.6 1071.2 145.4
WMK 987.3 126.4 1172.3 154.0 1145.7 161.1

procedure. For each child, a new level-2 task is spawned. The tree
is expanded up to 224 nodes. We set the simulated load for each
node to 120 FMA instructions using 24 registers. Figure 7 shows
the average number of nodes processed per second for increasing
tree depths. Across all GPU types and scenarios, the WMK variants
either achieved the highest performance or were only marginally
behind the best technique. We observed that WMK with global
queues works well for low tree depths, while local queues boost
performance for larger tree depths up to a factor of 2×, especially
on the GTX 580 and 680. At low tree depths, load balancing be-
tween worker-blocks is important. For larger tree depths, a sufficient
number of tasks is available to all worker-blocks, and the reduced
memory latency of shared queues increases performance.

TSK becomes more efficient with increasing tree depth as the relative
overhead of kernel launches diminishes. HDP slightly outperforms
TSK for small trees, likely because it avoids CPU-GPU round-trips.
For larger trees, the effect is reversed. SFT performs poorly and
even slightly drops in performance for larger tree depths. SFT again
suffers from memory management and work aggregation overheads,
which get more severe as the allocator’s memory pool is filling up.
Surprisingly, the performance on the GTX 680 is overall very low in
comparison to the other two GPU architectures. We can only guess
that the 680’s design, focused on high graphics performance, is
detrimental to algorithms that involve a lot of control and scheduling
and less processing.

Feed-Forward pipeline To evaluate each technique’s ability to
cope with procedures of different character, we simulate eight vari-
ants of a seven-stage feed-forward pipeline. We compare the use of
procedures of equal thread count (256) versus different thread counts
(1–512), and equal number of registers used (32 per thread) versus
different number of registers (8–63 per thread). In addition, we ran-
domize the simulated load of each task (20–1800 FMA instructions).
Each pipeline stage shows expanding behavior, generating tasks for
more threads than were used in the previous stage. We start each
pipeline with 3000 initial tasks. To keep queue lengths as short as
possible, we set the scheduling policy to preferably draw elements
from stages at the back of the pipeline. As this strategy keeps queue
lengths short, it allows much larger problem sets to be handled and
can have a positive impact on performance as elements might stay in
cache between enqueue and dequeue. As TSK and HDP do not offer
the ability to influence the scheduling policy, there is no control over
queue lengths. As a consequence TSK and HDP reach up to 2M
tasks in the queues, while WMK only uses up to 100k.

Figure 7: Expanding tree example on a GTX 580, 680, and TITAN. Performance is given in million nodes per second. Each tree node is
associated with either of four procedures. Thanks to fast load balancing via global memory, WMKG is very efficient for a low number of nodes.
For wide trees, WMK achieves the best performance in most cases. On the GTX TITAN, TSK is overall slightly faster, gaining an advantage
already at low tree depths. SFT is very slow due to its dynamic memory and work aggregation overhead.

Table 4: Relative execution time for a 7-stage pipeline compared to
TSK as the baseline, using FMA instructions as simulated load on a
GTX 580, 680, and TITAN. WMKG uses queues in global memory.
HDP failed to complete the tests with different thread counts.

580 680 TITAN
ER DR ER DR ER DR

equal
thread
counts

SFT 4.81 4.77 4.68 4.58 4.72 4.69
TSK 1.00 1.00 1.00 1.00 1.00 1.00
HDP - - - - 1.85 0.97
WMKG 0.94 0.86 0.91 0.83 1.42 1.16
WMK 0.58 0.55 0.38 0.45 1.04 0.82

different
thread
counts

SFT 12.52 12.31 12.93 12.79 12.12 12.66
TSK 1.00 1.00 1.00 1.00 1.00 1.00
WMKG 1.52 1.18 1.00 1.17 1.78 1.29
WMK 0.99 0.77 0.72 0.71 1.27 0.95

ER = equal number of registers, DR = different number of registers

Relative execution times compared to TSK are shown in Table 4.
TSK is very competitive, as it requires only seven kernel launches.
WMK with queues in shared memory shows the best performance
in 10 out of 12 cases. HDP did not complete the tests for different
thread counts, which we suspect to be due to issues in the implemen-
tation of the still relatively new Dynamic Parallelism. WMK only
shows a slight regress in performance with different thread counts
compared to equal thread counts. The relative execution time of
WMK/WMKG decreases in 5 of 6 cases when moving from equal to
different number of registers. It seems that the concurrent execution
of kernels with different register usage affects the hardware sched-
uler more severely than a lower occupancy affects WMK. Although
this acyclic pipeline with strongly differing procedure characteristics
is theoretically very well suited for kernel-based approaches, WMK
overall seems the best choice due to its ability to keep data in shared
memory. Again, SFT is 4.5× slower than TSK in the equal thread
counts setup. In the different thread counts test, the performance
of SFT further reduces to a factor of 12, which can be attributed to
Softshell’s inability to handle tasks with different thread counts.

6 Applications

To show the utility of Whippletree, we build three graphics applica-
tions with different task types: a real-time Reyes pipeline, procedural
geometry generation, and a volume renderer with concurrent irradi-
ance caching.

6.1 Real-time Reyes pipeline

The Reyes rendering pipeline [Cook et al. 1987] is primarily used
in cinematic productions for high quality image synthesis. A GPU
implementation is challenging, as the pipeline is recursive, irregular,
and has unbounded memory requirements. A Reyes pipeline con-
sists of the following stages: Bound, Split, Dice, Shade, Sample, and
Composite. Bound performs culling. Split and Dice are responsi-
ble for splitting input patches into micropolygons of subpixel size.
Shade computes vertex colors, which are interpolated in Sample.
The subpixel samples are then combined in Composite.

Previous attempts at bringing Reyes to the GPU have always split
the pipeline into multiple kernels, using four [Patney and Owens
2008], five [Tzeng et al. 2010], or eight kernels [Zhou et al. 2009].
Tzeng et al. [2010] use persistent threads, but only for their first
stage. We model the entire pipeline as a single Whippletree program.
Furthermore, we swap the shade and sample stages, and perform
per-sample shading. Input data is given in the form of cubic Beźier
patches with a 4 × 4 control mesh. The different task types avail-
able in the Whippletree programming model allow each stage to be
expressed in a natural yet efficient manner, as detailed in Table 5.

The Bound stage is modeled as a level-0 task of 16 threads. Each
thread transforms one vertex to screen space and writes the vertex
position to shared memory. Then, the orientation of each face is
computed, and, if all face away from the camera, the patch is culled.
For the Split stage, we use a level-0 task of 4 threads to split a patch
along its longer axis. Each thread operates on one row or column
of the input patch. Dice + Sample uses level-1 tasks of 256 threads
to slice each patch 15 times along each axis, generating 16 × 16
vertices. At first, we use one thread per vertex, then we use one
thread per micropolygon for sampling. Shade uses independent
level-2 tasks to perform shading. Composite is realized in OpenGL
during display.

Table 5: Implementing a Reyes pipeline, we take advantage of all
three task types available in the Whippletree programming model.
Bound and Split rely on lock-step execution and communicate via
shared memory, Dice + Sample uses barrier synchronization, and
Shade runs as independent threads.

Stage Task type Threads Register Shared Memory

Bound level-0 task 16 38 128 bytes
Split level-0 task 4 63 192 bytes

Dice + Sample level-1 task 256 40 3072 bytes
Shade level-2 task 1 30 0

Table 6: Reyes rendering times (ms) on a GTX 680 and TITAN
with a screen resolution of 1920× 1080 pixels. An implementation
using all three task types outperforms using level-2 tasks only. WMK
achieves the best performance by exploiting data locality with queues
in shared memory.

Sphere Teapot Killeroo
680 TITAN 680 TITAN 680 TITAN

level-2
only

TSK 7325 737.3 5804 509.3 439.3 37.5
HDP - 699.1 - 472.5 - 36.7
WMKG 4812 825.2 3809 670.0 297.3 57.0
WMK 2410 672.7 1522 442.3 121.1 39.2

multi
level

TSK 75.3 7.2 90.7 8.0 87.8 7.1
HDP - 6.7 - 7.0 - 6.9
WMKG 52.6 8.3 61.3 10.2 59.7 10.1
WMK 16.4 5.3 20.3 6.7 21.7 6.6

We evaluate the performance of the Reyes implementation using
three scenes: Sphere (8 input patches), Teapot (32 patches) and
Killeroo (11500 patches, shown in Figure 1, middle). Furthermore,
to evaluate whether the ability to use different task types impacts
execution speed, we build a version using only level-2 tasks. In this
version, every task is executed by a single thread only. Therefore,
there is no need for inter-thread communication. However, the level-
2-only version needs to cope with the same per-task load and, thus,
needs more registers to store intermediate values.

The results for all Reyes tests can be found in Table 6. The level-
2-only version of the pipeline is significantly slower than the full
version. For the Killeroo scene, the difference is approximately 5×,
for Sphere and Teapot 150×. The increased register and shared
memory usage explains the slowdown for Killeroo. Sphere and
Teapot start out with very few input patches, so there is very little
parallelism available during the first split operations. Using different
task types to have multiple threads work on each item cooperatively
offers more parallelism in the initial phase, leading to better GPU
utilization and reduced task latency.

In the full version, WMK achieves the best performance in all cases.
For WMK the usage of shared queues leads to a substantial per-
formance improvement of up to 3× on the GTX 680 and 1.5×
on the GTX TITAN. HDP achieved the second best performance,
outperforming TSK by about 10%. In this cyclic pipeline setup,
the repeated kernel launch overhead of TSK induces a large perfor-
mance penalty. Especially in the initial phase with only few available
tasks the launch overhead is apparent, as brief kernel executions are
interrupted by long waiting periods (see Figure 8).

6.2 Procedural geometry generation

Procedural generation of geometry plays an important role in content
creation for movies and games. An example of such a procedural
approach are shape grammars. Shape grammars are mainly used for
urban environments as building structures and façades often follow
a repetitive pattern. Such patterns can be generated using production
rules. A production rule consists of a sequence of shape operators
such as, e. g., geometric transformations, that are to be applied to
a given input shape to produce a set of output shapes. Starting
from a few simple input shapes, evaluation of these rules leads to
increasingly elaborate shape compositions, eventually producing
highly detailed output geometry. The generation process itself can
be viewed as a tree: rules generally create multiple output shapes,
which are again processed by other rules. So-called terminal shapes
define the final output geometry, making up the leaves of the tree.

cl
oc

k
cy

cl
es

0.0M

0.5M

1.0M

1.5M

0.0M

0.5M

1.0M

1.5M

0 54321 76
multiprocessor

(a) TSK

0 54321 76
multiprocessor

(b) WMK

Figure 8: Execution trace for a subset of the multiprocessors on a
GTX TITAN while rendering a single Reyes frame of the Teapot scene.
Every rectangle corresponds to an executed task. Darker areas
correspond to enqueue times. TSK achieves a higher occupancy.
However, the clearly visible read-back and kernel launch overhead
(empty regions) leads to an overall longer execution time compared
to WMK. This is especially harmful in the beginning, as little data
is available. WMK is able to distribute work more efficiently and
shows good load balancing.

The Whippletree programming model allows us to easily re-
implement a state of the art GPU shape grammar [Steinberger et al.
2014] (Figure 1, left). Every shape operator can be modeled as a
procedure. Using the different task types, we are able to exploit
intra-operator parallelism. For example, the operator that splits a
cube into six faces can be modeled as a level-0 task using six threads,
a twelve-thread task is used to generate the vertices, indices and
normals of a box terminal, and an n-thread task is used to evenly
distribute n shapes inside a bounding shape.

We compare the performance of our implementation using the TSK,
HDP, WMKG, and WMK schedulers and evaluate the benefits of us-
ing multi-threaded tasks. Furthermore, we investigate the influence
of different scheduling policies on queue lengths.

The derivation times for a scene with a varying number of skyscrap-
ers (Figure 1, left) is shown in Table 7. Using multi-threaded level-0
task for six out of twenty operators boosts performance by up to 3×.
WMK achieves good results for all scene sizes. In the scene with
only a single house, the performance-enabling factor is load balanc-

Table 7: Evaluation times (in ms) for the procedural generation
of different numbers of skyscrapers on a GTX TITAN. Exploiting
intra-operator parallelism using level-0 tasks significantly increases
performance.

buildings 1 256 1024
parallel operators on off on off on off

TSK 1.99 2.98 2.94 5.77 6.14 17.30
HDP 0.37 1.03 1.58 4.65 5.30 15.84

WMKG 0.14 0.26 1.49 2.85 5.73 10.85
WMK 0.15 0.26 1.41 2.49 5.33 9.17

(a) TSK (b) HDP (c) WMK (d) WMK reverse

Figure 9: Queue fill levels for a simplified skyscraper test scene.
TSK and HDP start the execution of tasks whenever possible to
keep the GPU busy, leading to excessive memory requirements for
queuing (a, b). WMK can be configured to prioritize procedures
associated with tasks closer to the leaves of the derivation tree,
keeping queue lengths short (c). Inverting this scheduling policy
increases queue fill levels to a maximum (d).

ing, thus WMKG performs slightly better than WMK. In the large
scene, HDP achieves the best performance. This is not surprising,
as WMK suffers from suboptimal occupancy due to the fusion of
mostly simple procedures with a few very complex procedures into a
single kernel. Overall, our Whippletree implementation is 5− 10×
faster than the original implementation [Steinberger et al. 2014].

Figure 9 visualizes the influence of the scheduling policy and tech-
nique on queue length for a simplified rule set. While TSK and HDP
launch kernels for all available tasks, WMK can dynamically make
fine-grained scheduling decisions. In this example, we prioritize
procedures associated with tasks close to the leaves of the derivation
tree. Thus, data is drained out of the system more quickly, keeping
queue lengths short, which is important for handling large problems.

6.3 Volume rendering with irradiance caching

As a final example, we apply Whippletree to volume rendering
(Figure 1, right). Starting with the CUDA implementation by
Kroes et al. [2012], we develop a Monte Carlo volume rendering
(MCVR) solution with irradiance caching for accelerated global illu-
mination. The main challenge in this application lies in balancing
three competing procedures on the GPU: rendering to generate an
output image using raycasting, cache creation to compute new irra-
diance cache entries and cache update to improve the quality of the
cache by eliminating discontinuities in the estimated irradiance field.
Each operation can be modeled as a procedure. Rendering executes
as level-1 task with 16 × 16 threads, each casting a ray through a
certain pixel into the scene. Cache creation works in level-1 tasks
with 128 threads, each tracing rays from a common starting point
into random directions to compute an irradiance estimate. Cache up-
date uses level-0 tasks of 32 threads to check whether cache entries
need to be updated.

We follow a progressive rendering approach, starting rendering tasks
covering the entire screen. During rendering, each ray uses the
irradiance cache to query the incoming radiance at random positions
along the ray. If no cache entry is present for a given location, a
cache creation task is spawned, and a rough light estimate is used
instead. After raycasting, each ray adds its color estimate to the
output buffer and the task re-enqueues itself to be scheduled at a
later point in time. In this way, rays are continuously generated for

Figure 10: Relative execution time allocated to the three different
procedures during Monte Carlo volume rendering with irradiance
caching. Using WMK, we dynamically adapt the time spent on cache
creation and update based on the cache hit rate (black). Note how
the cache creation time follows the cache hit rate. A movement of
the light source at t = 30s triggers a cache reset.

all pixels, and the Monte Carlo estimate is consistently improved.
When the camera is moved or the scene changes, the color buffer
is cleared and Monte Carlo integration starts over. Note that the
irradiance cache only needs to be flushed if the light sources or
volume transfer function change. Cache update behaves similar to
rendering: a fixed number of cache update tasks are kept in the
system, which continuously re-enqueue themselves for scheduling.

To be able to quickly respond to camera movements while at the
same time ensuring fast updates of the irradiance cache, scheduling
must dynamically adapt to the situation at hand. Out of the presented
scheduling approaches, only WMK supports the necessary schedul-
ing policies. If the cache is well-filled, the majority of irradiance
lookups can be answered, and it is not necessary to create additional
cache entries. If the cache is nearly empty, it is desirable to allocate
more execution time to cache creation. Nevertheless, there must still
be enough time for rendering to guarantee interactive feedback to
camera motion. To achieve this goal, we dynamically adapt the time
spent on cache creation and update proportional to the cache hit rate
(Figure 10 and supplemental video).

Additionally, we prioritize the rendering tasks individually. Due to
the complex interaction between the inhomogeneous volume data
set and scene light sources, the convergence rate generally varies
strongly across the image. To achieve more uniform convergence,
we estimate the expected gain estimated from previous Monte Carlo
iterations to prioritize the rendering tasks. Using irradiance caching
without prioritization of screen regions, we already could improve
convergence rates by 4× over Kroes et al. [2012]. Adapting the
scheduling based on the expected gain yields another 2.95× im-
provement.

7 Conclusions and future work

By incorporating the essentials of the GPU execution hierarchy into
a task-based programming model, Whippletree provides a power-
ful abstraction without compromising generality or performance.
Complex software pipelines, recursive algorithms and many other
applications, which were previously very hard to map to the GPU,
can now be expressed in a simple and natural way. Independence
of an underlying scheduling approach allows the same Whippletree
program to be run on top of different GPU schedulers. This kind
of flexibility enables easy experimentation and selecting the most
efficient scheduling approach on a per-application basis.

With WMK, we introduced a new approach to high-performance
scheduling of dynamic, inhomogeneous workloads on the GPU.
Benchmarks show that it is always efficient, particularly so in cases
where data locality can be exploited. Conventional approaches based
on launching multiple, separate kernels cannot take advantage of
data locality across kernel launches. Thus, they only reach the
performance of WMK in scenarios where only few kernel launches
are needed and a high level of parallelism is available at all times.

Implementing Reyes rendering, procedural generation of geometry,
and Monte Carlo volume rendering as real-world examples, we could
confirm the applicability and high performance of our approach.
We demonstrated how the ability to access all levels of the GPU
execution hierarchy leads to a significant performance advantage.
WMK even enables adaptive scheduling policies, such as time-quota-
based scheduling of multiple processes, or fixed-priority scheduling
to keep queue lengths short in pipeline setups.

In the future, we would like to see hardware vendors shift their focus
from the unnecessarily restrictive, kernel-based model towards a
new kind of programming interface that allows the GPU to more
directly be programmed as the hierarchical MIMD machine that
it really is. We envision features such as hardware-accelerated,
freely-configurable queues, and the ability to specify the execution
configuration on a per SM level to become available. To offer a
maximum of control to software schedulers, it would be important to
provide the functionality to launch individual warps while managing
the allocation of shared memory and registers dynamically. In this
way, WMK could overcome its biggest weakness, the fact that GPU
occupancy is limited by the heaviest procedure.

Dynamic Parallelism could be evolved to avoid book keeping in
cases where no synchronization on kernel completion is necessary.
Another enhancement would be the option to bind a dynamically
launched kernel to the SM of the parent block, allowing communica-
tion with the new kernel through shared memory. Even without these
features, a more efficient implementation of Dynamic Parallelism
could enable a combination of HDP and WMK to capture the best
of both worlds. Subsets of procedures with similar resource require-
ments could be merged into individual WMK kernels, enabling local
queuing between those procedures. At the same time Dynamic Par-
allelism could be used to start those kernels to provide appropriate
load balancing. Whippletree is open source and can be downloaded
at http://www.icg.tugraz.at/project/parallel.

Acknowledgements
This research was funded by the Austrian Science Fund (FWF):
P23329.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of
ray traversal on GPUs. In Proc. HPG, 145–149.

BREITBART, J. 2011. Static GPU threads and an improved scan
algorithm. In Proc. Euro-Par 2010, 373–380.

CEDERMAN, D., AND TSIGAS, P. 2008. On dynamic load balancing
on graphics processors. In Proc. Graphics Hardware, 57–64.

CHATTERJEE, S., GROSSMAN, M., SBIRLEA, A., AND SARKAR,
V. 2011. Dynamic task parallelism with a GPU work-stealing
runtime system. In Proc. Languages and Compilers for Parallel
Computing.

CHEN, L., VILLA, O., KRISHNAMOORTHY, S., AND GAO, G.
2010. Dynamic load balancing on single- and multi-gpu systems.
In IEEE Parallel Distributed Processing.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
reyes image rendering architecture. SIGGRAPH Comput. Graph.
21, 4 (Aug.), 95–102.

HARGREAVES, S. 2005. Generating shaders from HLSL fragments.
ShaderX3: Advanced rendering with DirectX and OpenGL.

HOBEROCK, J., LU, V., JIA, Y., AND HART, J. C. 2009. Stream
compaction for deferred shading. In Proc. HPG, 173–180.

KROES, T., POST, F. H., AND BOTHA, C. P. 2012. Exposure render:
An interactive photo-realistic volume rendering framework. PLoS
ONE 7, 7 (07).

LAINE, S., KARRAS, T., AND AILA, T. 2013. Megakernels
considered harmful: Wavefront path tracing on GPUs. In Proc.
HPG.

LIU, F., HUANG, M.-C., LIU, X.-H., AND WU, E.-H. 2010.
Freepipe: A programmable parallel rendering architecture for
efficient multi-fragment effects. In Proc. I3D, 75–82.

LUO, L., WONG, M., AND HWU, W.-M. 2010. An effective
GPU implementation of breadth-first search. In Proc. Design
Automation Conference, ACM, 52–55.

NVIDIA. 2012. CUDA Dynamic Parallelism Programming Guide.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. Optix:
a general purpose ray tracing engine. ACM TOG 29, 4(66).

PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
adaptive surface subdivision. ACM TOG 27, 5(143).

SATISH, N., HARRIS, M., AND GARLAND, M. 2009. Designing
efficient sorting algorithms for manycore GPUs. In Proc. IEEE
Parallel&Distributed Processing.

STEINBERGER, M., KAINZ, B., KERBL, B., HAUSWIESNER, S.,
KENZEL, M., AND SCHMALSTIEG, D. 2012. Softshell: Dy-
namic scheduling on GPUs. ACM TOG 31, 6(161).

STEINBERGER, M., KENZEL, M., KAINZ, B., MÜLLER, J.,
WONKA, P., AND SCHMALSTIEG, D. 2014. Parallel gener-
ation of architecture on the GPU. In Computer Graphics Forum,
vol. 33, 73–82.

STUART, J. A., AND OWENS, J. D. 2009. Message passing on data-
parallel architectures. In Proc. Parallel&Distributed Processing,
IEEE.

SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
AND HANRAHAN, P. 2009. GRAMPS: A programming model
for graphics pipelines. ACM TOG 28, 1, 4:1–4:11.

TZENG, S., PATNEY, A., AND OWENS, J. D. 2010. Task manage-
ment for irregular-parallel workloads on the GPU. In Proc. HPG,
29–37.

XIAO, S., AND FENG, W. 2010. Inter-block GPU communication
via fast barrier synchronization. In IEEE Parallel Distributed
Processing.

YAN, S., LONG, G., AND ZHANG, Y. 2013. Streamscan: fast scan
algorithms for GPUs without global barrier synchronization. In
ACM Principles and Practice of Parallel Programming, 229–238.

ZHOU, K., HOU, Q., REN, Z., GONG, M., SUN, X., AND GUO, B.
2009. RenderAnts: interactive Reyes rendering on GPUs. ACM
TOG 28, 5 (Dec.), 155:1–155:11.

http://www.icg.tugraz.at/project/parallel

