
Volume Rendering with Advanced GPU Scheduling Strategies

Philip Voglreiter∗1, Markus Steinberger∗1, Rostislav Khlebnikov∗1, Bernhard Kainz†2, Dieter Schmalstieg∗1

1Institute for Computer Graphics and Vision, Graz University of Technology
2Department of Computing, Imperial College London

ABSTRACT

Modern GPUs are powerful enough to enable interactive display of
high-quality volume data even despite the fact that many volume ren-
dering methods do not present a natural fit for current GPU hardware.
However, there still is a vast amount of computational power that re-
mains unused due to the inefficient use of the available hardware. In
this work, we demonstrate how advanced scheduling methods can be
employed to implement volume rendering algorithms in a way that
better utilizes the GPU by example of three different state-of-the-art
volume rendering techniques.

Index Terms: D.4.1 [Operating Systems]: Process Management—
Scheduling; I.3.3 [Computer Graphics]: Picture/Image Generation—
Display Algorithms

1 INTRODUCTION AND RELATED WORK

While many volume rendering techniques seem to fit the single
instruction, multiple data (SIMD) execution model of current GPUs
well, a more in depth analysis often shows that processor utilization
is far from perfect. One reason for this problem is divergence. If
a subset of threads executing on a SIMD unit finish early, their
cores are left idle. Another problem is synchronization with the
CPU, which in case leads to underutilization. In the following we
show how these problems manifest in common volume rendering
approaches and how advanced scheduling strategies can be used to
mitigate them.

Volume ray casting [3] is probably the most widespread method
for displaying volumetric data. For improved image quality and
depth perception, global lighting approaches are used, e.g., image
plane sweep volume illumination (IPSVI, Sunden et al. [6]) creates a
deep shadow map on the fly. For unstructured grid data, object order
methods, such as particle-based volume rendering (PBVR, [2, 4]),
are preferred. These techniques employ mutually occluding, opaque
particles rather than visibility sorting.

Advanced scheduling approaches can increase the overall
resource utilization on GPUs. In particular, persistent thread
implementations [1] allow for more efficient work distribution and
the ability to create work directly on the GPU [5].

2 TEST SYSTEM AND DATASETS

We base our tests on Softshell [5], a GPU scheduling framework for
CUDA. We use three regular-grid datasets: Stanford Dragon (643),
Bonsai (5122 × 182), and MECANIX (2562 × 372). For PBVR,
we use two tetrahedral datasets: Stanford Dragon (1.25× 109

equally sized cells) and the simulation of a radio frequency ablation
(1.25×109, min/max cell size ratio 1:1000).

∗e-mail:*surname*@icg.tugraz.at
†e-mail:b.kainz@imperial.ac.uk

Figure 1: The Mecanix (left) and Bonsai (right) datasets rendered with
single scattering (IPSVI).

3 CASE STUDY: RAY CASTING

We perform a 1-to-1 assignment of rays and threads with equidistant
sampling steps. For optimization, we employ early ray termination,
which stops rays after reaching a certain opacity threshold. As
threads finish early, thread divergence is inevitable. We analyze
thread divergence for three datasets: The rather homogenous Dragon
as well as Mecanix and Bonsai, which are comprised of distinct,
slim features. As shown in Table 1, the utilization for the standard
appraoch (STD) is between 78% and 84% for a viewport of 10242

pixels. Decreasing the viewport, though, raises divergence to about
60%.

Ray re-convergence Building on Softshell [5], we apply a thread
re-convergence strategy. Every L iterations of the sampling loop,
we check the ratio of active threads. If it drops below P%, we stop
the execution of threads, save their context and regroup them with
other threads via global memory. Varying L and P allows to alter the
aggressiveness of the re-convergence method. Performance measure-
ments show that, although we create higher utilization, the gain in
performance is limited by the introduced overhead and consecutively
speedups hover around 1. In some cases, as shown in Table 1, we
even lose performance. In case of ray casting, optimal parameter
settings strongly vary and are subject to optimization themselves.

4 CASE STUDY: PLANE SWEEP VOLUME ILLUMINATION

Image Plane Sweep Volume Illumination [6] renders volumes in a
scan-line fashion with single scattering and shadowing. Essentially, a
shadow map is created slice-by-slice during back-to-front rendering.
Intermediate synchronization via the CPU is necessary after each
slice, leading to multi-pass rendering.

Optimization For optimal performance, we perform two steps.
First, we increase the parallelism by using n threads per ray, taking
n samples in parallel and compositing them in local shared memory.
Second we spawn threads dircetly on the GPU, to avoid the multi-
pass scheme and execute rays from different slices simultaneously.



Table 1: Speedup measured for DVR with different re-convergence strategies. STD is the baseline CUDA implementation, RC corresponds
re-convergence with L = 20 and P = 0.7, A-RC is more aggressive with L = 1 and P = 0.95. For big viewports, groups of rays are more coherent,
leading to hither utilization (util) and thereby less iterations (its). Both RC and A-RC introduce considerable overhead and limit the achievable
speedup (speed↑).

Dragon Mecanix Bonsai
method viewport speed↑ its util speed↑ its util speed↑ its util

STD 10242 1.00 365k 84% 1.00 7.02M 78% 1.00 2.67M 82%
RC 10242 0.81 352k 87% 0.76 6.17M 88% 1.15 2.53M 87%

A-RC 10242 0.67 328k 94% 0.54 6.09M 89% 0.95 2.44M 90%

Each completed ray checks its neighbors for completion and in
case all data for its immediate successors is available, it starts their
execution. In this way, we fill free execution units without having to
synchronize with the CPU.

Results We compare a plain CUDA implementation of IPSVI
with our scheduled variant. Table 2 presents the measurements. We
observe a strong underutilization for the original and achieve the
most significant speedups for low resolutions, while even at higher
settings, the scheduled version maintains a speedup factor of 3.

Table 2: Speedup factors over the non-scheduled version observed for
different resolutions while rendering MECANIX and Bonsai with IPSVI.
The vertical resolution depicts the number of scan line iterations
aligned to an image axis, while horizontal values correspond to the
number of fragments on a single scan line. For a low number of such
fragments, the parallel sampling approach contributes most to the
tremendous speedup, while even at sufficient inherent parallelism, we
maintain a factor of 4 over the standard CUDA version.

MECANIX Bonsai

res 64 256 1024 64 256 1024

64 26.0 15.4 6.1 27.5 16.6 7.1
256 30.3 16.9 5.4 28.6 15.5 5.7

1024 29.9 15.7 4.3 28.2 15.4 4.0

5 CASE STUDY: PARTICLE BASED VOLUME RENDERING

PBVR [2, 4] is an object-order method used to efficiently render
unstructured grid data. Simulating light emission of a dense field
of particles with respect to mutual occlusion allows for volumetric
rendering of such grids. The independence of the cells allows for
parallel, per-cell particle generation and projection on-the-fly. First,
incorporating cell size and transfer function, we determine per-cell
particle counts. Next, we randomly position the particles. To account
for opacity gradients, we apply a term attracting particles towards
high opacities. We project the particles on the screen by combining
depth buffering (mutual occlusion) and super-sampling (multiple
samples per pixel).

Thread divergence during particle generation Globally, suffi-
ciently many threads are ready for execution. However, local thread
groups are non-coherent due to varying particle counts resulting
from both cell sizes and transfer functions. We again apply our
re-convergence strategy to increase performance.

Results In Table 3 we present the timings for both datasets. As
expected, uniform datasets (Dragon) barely profit from schedul-
ing, while rendering the non-uniform ablation dataset considerably
benefits from re-convergence in a conservative setup.

6 CONCLUSION

We have shown that GPU-specific issues are inherent to state-of-the
art volume rendering techniques. However, advanced scheduling

Table 3: Speedup and render times measured for PBVR with re-
convergence strategies. STD is the baseline CUDA implementation,
RC corresponds to re-convergence with L = 20 and P = 0.7, and A-
RC is more aggressive with L = 1 and P = 0.95. While rendering the
considerably irregular Ablation dataset, we observe speedups even for
the aggressive version. This is remarkable given the high frequency,
and induced massive overhead, of coherency queries using A-RC.
Note how RC outperforms A-RC for larger particle counts.

part. STD RC speed↑ A-RC speed↑

Dragon 5 ·107 31 35 0.89 45 0.69
1 ·108 56 58 0.97 89 0.64
1 ·109 375 371 1.01 848 0.44
4 ·109 1320 1230 1.07 3562 0.37

Ablation 5 ·107 95 140 0.68 66 1.44
1 ·108 148 142 1.05 122 1.21
1 ·109 927 161 5.75 1186 0.78
4 ·109 3180 243 13.08 5180 0.61

strategies dealing with these issues can increase performance con-
siderably. Besides testing more complex algorithms, we also want
to investigate automatic adjustment of scheduling parameters on the
fly in upcoming work.

ACKNOWLEDGEMENTS

This work was supported by the Austrian Science Fund (P23329),
and the European Union (ICT-2011.5.2 600641). Bernhard Kainz
was supported by a Marie Curie Intra-European Fellowship within
the 7th. European Community Framework Programme (FP7-
PEOPLE-2012-IEF F.A.U.S.T. 325661).

REFERENCES

[1] T. Aila and S. Laine. Understanding the efficiency of ray traversal on
gpus. In Proc. ACM SIGGRAPH HPG, pages 145–149. ACM, 2009.

[2] B. Csébfalvi and L. Szirmay-Kalos. Monte carlo volume rendering. In
Proc. of IEEE Visualization, pages 449–456, 2003.

[3] M. Levoy. Efficient ray tracing of volume data. ACM Trans. Graph.,
9(3):245–261, 1990.

[4] N. Sakamoto, J. Nonaka, K. Koyamada, and S. Tanaka. Particle-based
volume rendering. In Visualization, 2007. APVIS, pages 129 –132, 2007.

[5] M. Steinberger, B. Kainz, B. Kerbl, S. Hauswiesner, M. Kenzel, and
D. Schmalstieg. Softshell: dynamic scheduling on gpus. ACM Trans.
Graph., 31(6):161:1–161:11, 2012.

[6] E. Sundén, A. Ynnerman, and T. Ropinski. Image Plane Sweep Volume
Illumination. IEEE TVCG(Vis Proceedings), 17(12):2125–2134, 2011.


