
Speculative Parallel Reverse Cuthill-McKee
Reordering on Multi- and Many-core Architectures

Daniel Mlakar, Martin Winter, Mathias Parger, Markus Steinberger
Graz University of Technology, Austria

{daniel.mlakar, martin.winter, mathias.parger, steinberger}@icg.tugraz.at

Abstract—Bandwidth reduction of sparse matrices is used
to reduce fill-in of linear solvers and to increase performance
of other sparse matrix operations, e.g., sparse matrix vector
multiplication in iterative solvers. To compute a bandwidth
reducing permutation, Reverse Cuthill-McKee (RCM) reordering
is often applied, which is challenging to parallelize, as its core
is inherently serial. As many-core architectures, like the GPU,
offer subpar single-threading performance and are typically only
connected to high-performance CPU cores via a slow memory
bus, neither computing RCM on the GPU nor moving the
data to the CPU are viable options. Nevertheless, reordering
matrices, potentially multiple times in-between operations, might
be essential for high throughput. Still, to the best of our
knowledge, we are the first to propose an RCM implementation
that can execute on multicore CPUs and many-core GPUs alike,
moving the computation to the data rather than vice versa.

Our algorithm parallelizes RCM into mostly independent
batches of nodes. For every batch, a single CPU-thread/a GPU
thread-block speculatively discovers child nodes and sorts them
according to the RCM algorithm. Before writing their permu-
tation, we re-evaluate the discovery and build new batches. To
increase parallelism and reduce dependencies, we create a signal-
ing chain along successive batches and introduce early signaling
conditions. In combination with a parallel work queue, new
batches are started in order and the resulting RCM permutation
is identical to the ground-truth single-threaded algorithm.

We propose the first RCM implementation that runs on the
GPU. It achieves several orders of magnitude speed-up over
NVIDIA’s single-threaded cuSolver RCM implementation and is
significantly faster than previous parallel CPU approaches. Our
results are especially significant for many-core architectures, as
it is now possible to include RCM reordering into sequences of
sparse matrix operations without major performance loss.

Index Terms—many-core, multicore, CPU, GPU, Reverse
Cuthill-McKee, scheduling, work distribution

I. INTRODUCTION

Sparse matrices are essential in various scientific computing
domains: the finite element method heavily relies on sparse
matrices [1]; large and complex systems of equations can often
only be expressed as sparse systems [2]; highly constrained
linear programming problems are subject to sparse optimiza-
tions [3]; electrical circuit design and simulation use sparse
representations [4]; as 3D meshes grow very large, sparse
matrices also find their way into geometry processing [5]. Due
to the ever rising amount of information, sparse data structures
are getting even more important in many disciplines: to capture
social or communication networks [6]; for natural language
processing [7]; and for sparse neural networks [8].

It is well known that the sparsity pattern of a matrix can
affect performance of matrix operations [2], [9], [10]. While

the matrix bandwidth is a good indicator for the fill-in, e.g.,
in Cholesky solvers, it also dictates memory access patterns
in sparse matrix operations, which, in turn, dictate caching
behavior. On many-core architectures like the GPU, where
algorithms are often memory bound, good access patterns are
crucial. Thus, matrices are often reordered to reduce their
bandwidth, i.e., non-zero entries are placed closer to the
diagonal. One of the most prominent reordering heuristics is
the Reverse Cuthill-McKee (RCM) algorithm [11], [12].

RCM is predestined for serial execution, as the algorithm
follows a Breadth-First-Search (BFS) of the graph view on the
matrix, i.e., rows and columns as nodes and non-zero entries as
edges. In contrast to BFS, RCM also imposes that child nodes
are visited in order of their degree. Thus, efficient parallel
RCM is difficult, as the algorithm exhibits a complex pattern,
known as amorphous data-parallelism, i.e., parallelism and
dependencies irregularly unfold during runtime and thus must
be found and exploited dynamically. Previous parallelization
attempts are scarce [13]–[15]. They follow the BFS pattern
which they either execute speculatively or level-by-level. All
three approaches exclusively target CPU architectures. No
parallel solutions of RCM exist for modern supercomputing,
where execution is often accelerated with many-core architec-
tures like the graphics processing unit (GPU). Thus, the only
way to reorder matrices on GPU-backed systems is to move
them to the host, reorder and transfer them back to the GPU
over a slow memory bus, delaying further execution.

To address these issues, we propose a novel parallelization
of the RCM algorithm, which targets both multicore and many-
core architectures. We make the following contributions:

• We present a batch-based parallelization of the RCM
algorithm that can be distributed across large core counts
and scales with the parallelism inherent to the matrix.

• We present a speculative node discovery approach, which
balances speculative execution and ensures that compute-
intensive sorting is never held back.

• We show that multiple handovers and chained signal
propagation enable parallel progress. Additionally, data is
kept local, effectively minimizing memory transactions.

• We include work aggregation in our signaling scheme to
generate well balanced per-batch workloads.

• By porting our algorithm to the GPU, we present the first
RCM implementation that targets many-core architec-
tures. Our approach works completely in local scratchpad
memory and does not require additional memory.



We evaluated our approach on a single 12 core CPU node and
on a recent GPU architecture and observed speed-ups of up
to 24.9× and 13.0× compared to the optimized single-core
variant and 15.2× and 18.7× to previous work.

II. RELATED WORK

It is known that the distribution of non-zero entries in a
sparse matrix can have a large impact on the performance
of matrix operations [2], [9]. Recently this has also been
shown for operations on the GPU [16]. A minimal bandwidth,
i.e., a minimum distance of matrix entries to the diagonal is
associated with good performance. However, finding a mini-
mum bandwidth reordering is an NP-hard problem [17]. Thus,
various heuristics for reordering have been proposed, including
minimum-degree, Cuthill-McKee, RCM, Sloan, and nested
dissection [11], [18]–[21]. Most follow-up work on bandwidth
reduction focused on improving the reordering result, adjusting
previous work or combining different methods, all working on
a graph-based view of the matrix [18], [22]–[24]. Alternatively,
a spectral reordering can be used [25]. However, studies have
shown that hybrid approaches using RCM or Sloan achieve
the best results [26]–[29]. In practice RCM is still the go-to
method, due to its good reordering and simplicity.

Unsurprisingly, efficient single-threaded implementations
can be found in many wide-spread software packages, includ-
ing Matlab [30] and the HSL software library [31]. HSL sub-
routines of RCM are implemented in Fortran and optimizations
focus on performance enhancing factors such as determining
supervariables. The literature on parallel reordering can be
split into two categories: Parallelization of reordering algo-
rithms that are by design parallel, such as nested dissection
[19], [32] or hierarchical community-based ordering [33] and
parallelizing inherently serial algorithms such as RCM and
Sloan [13]–[15]. Previous RCM parallelizations either paral-
lelize each level of the BFS structure or use a speculative
BFS before parallelizing only across the level. We discuss the

Algorithm 1: Sequential RCM

1 Function RCM (r, i, s) // row offs, indices, start n
2 o← ∅ // the permutation array
3 m← s // marked nodes
4 Q← s // initial node
5 while Q 6= ∅ do // while nodes in the queue
6 p

∩←− Q // take next node from queue
7 c← ∅ // init local child array
8 for n = i[r[p] · · · r[p+ 1]] do // iterate children
9 if n /∈ m then

10 m
∪← n // mark n visited

11 v ← r[n+ 1]− r[n] // compute valence
12 c

∪← {v → n} // store node locally

13 sort(c) // sort children by valence
14 o

∪← c // add c to output
15 Q

∪← c // add c to the queue

16 return reverse (o)

details of these approaches in the next section. Nevertheless,
all aforementioned approaches have only been demonstrated
on multicore architectures and not on many-core processors.
We are the first to show an algorithm that works on both and
achieves significant speed-ups compared to previous work.

III. BACKGROUND

Before detailing our approach, we recap the RCM algorithm
and outline the considerations behind previous parallelizations.

a) Sequential RCM: The core RCM algorithm, shown in
Alg. 1, closely follows a BFS while imposing sorting criteria
during the discovery of nodes. We consider matrices in the
compressed sparse rows (CSR) format: an offset array pointing
to the start of each row and an index array capturing the
destination node of each adjacency. We use a local array c
to temporarily store nodes for sorting. For each node in the
queue, all children are visited (ln 8-12), processing those that
have not been visited before (ln 9). The valence is computed
for the visited children and they are sorted accordingly (ln 13).
The sorted children are then added to the permutation array
o and to the FIFO-queue. o in reverse order yields the RCM
output. A key observation for high performance is that sorting
needs to happen only among the children of each node, as the
nodes are already added to the FIFO-queue in correct order.

b) Leveled RCM: The simplest parallelization of RCM
follows the level structure of the BFS, as shown in Alg. 2:
Each level is explored in parallel; every node that has not
been discovered previously is added to a temporary array ci.

Additionally, for each discovered node, the parent with
the lowest position in the permutation is determined using
atomic operations (line 10) to ensure that sorting, which now
happens across the entire level, correctly considers the parent
location of first discovery. Sorting and writing the output can
be carried out in parallel. After one iteration is complete, the
next can start. This strategy also lends itself to the execution

Algorithm 2: Leveled RCM

1 Function LeveledRCM (r, i, s) // row offs, indices, start n
2 m←∞ , l1 ← s , i← 1
3 while li 6= ∅ do
4 si ← {∞} // lowest source tracker
5 ci ← ∅
6 foreach p ∈ li in parallel do
7 for n = i[r[p] · · · r[p+ 1]] do
8 mn ← atomicMin(m[n], i+ 1)
9 if mn ≥ i+ 1 then // is on level

10 atomicMin(si[n], o[p])
11 if mn > i+ 1 then // is first time
12 v ← r[n+ 1]− r[n]

13 ci
∪← {v → n}

14 parallelSort(ci, si) // sort with source
15 parallelWrite(o, ci)
16 li+1 ← ci
17 i← i+ 1
18 return reverse (o)



Algorithm 3: Unordered RCM

1 Function RCMUnordered (r, i, s)
2 l←BFSUnordered (r, i, s) // get all level infos
3 produce(s, 0) // insert starting node
4 foreach li ∈ l in parallel do
5 mi ← ∅
6 while consume(li−1) do // while incoming nodes
7 p←wait(li − 1) // wait for next node
8 c← ∅
9 for n = i[r[p] · · · r[p+ 1]] do

10 if level(n)= li + 1 and n /∈ mi then
11 mi

∪← n
12 v ← r[n+ 1]− r[n]

13 c
∪← {v → n}

14 sort(c)
15 produce(c, li + 1) // prod. for next thread
16 o

∪← c

17 return reverse (o)

on many-core architectures, however, parallelism is limited to
the number of nodes per level. Variants of the algorithms avoid
sorting the complete array, but rather first count the children
assigned to each parent, compute a prefix sum over the counts,
in parallel write the children to the output array and finally sort
them for each parent separately [13].

c) Unordered RCM: Another parallelization of RCM
relies on a parallel BFS and parallelizes across different levels
of the BFS [13], as shown in Alg. 3: Using speculative
execution and repeated relaxation of the already visited nodes,
BFS can be parallelized, but the execution speed strongly
depends on the structure of the graph. After the BFS, threads
operate in a producer-consumer fashion, with one thread per
level. Whenever a thread processed all children of one node,
it writes them to the output array and forwards them to the
thread on the next level. Each thread can directly write to
the output, as the count per level and thus the offsets in the
output array are known from BFS. While this strategy is well
suited for multicore architectures, it does not offer sufficient
parallelism for typical many-core processors.

d) Peripheral Node Finding: The chosen start node in-
fluences the reorder quality of the RCM algorithm. Typically,
a pseudo-peripheral node is chosen, i.e., a node that is far
away from other nodes but the distance is not necessarily the
diameter of the graph. In this work we focus on the core RCM
algorithm. Still, to compare to other methods that include start
node finding, we use a naive pseudo-peripheral node finding
approach: we start with a random node and execute multiple
rounds of BFS. For each BFS round we use the node with the
lowest valence on the last level of the previous BFS as a new
starting node. If two successive BFS lead to the same number
of levels we stop and use the last node as start node for RCM.

IV. BATCH-BASED RCM

Our main motivation is to provide a parallel RCM approach
that can run efficiently on many-core architectures like the

Algorithm 4: Batch RCM basic

1 Function BatchRCMBasic (b) // batch input n
2 {c, pc} ← discover(b) // discover children
3 sort(c, pc)
4 wait(Discovered) // wait for discovered
5 c← rediscover(c) // recheck discovered
6 signal(Discovered)
7 wait(Counted) // wait for output position
8 signal(Counted)
9 o← trimAppend(c) // trim removed children

10 addNewBatches(o, c) // add batches to queue

11 Function discover(b)
12 c← ∅
13 pc ← ∅
14 foreach p ∈ b do
15 for n = i[r[p] · · · r[p+ 1]] do
16 mn ← atomicMin(m[n], bi)
17 if mn > bi then
18 v ← r[n+ 1]− r[n]

19 c
∪← {v → n}

20 pc
∪← |c| // store parent offsets

21 return c, pc

22 Function rediscover(c)
23 foreach n ∈ c do
24 if m[n] < bi then
25 c← c\n

26 return c

GPU. Previous parallelization are suboptimal. Leveled RCM
(Alg. 2) can only draw parallelism from a single level and
requires multiple synchronization points. Unordered RCM
(Alg. 3) requires an unordered BFS, which has not been
shown for GPU, and only supports one worker per level in the
second phase, not properly utilizing a many-core system. We
propose batch-based RCM, following three goals: (1) Extract
parallelism where possible to provide sufficient load for many-
core architectures. (2) Execute speculatively to not stall cores,
but avoid excessive unnecessary work. (3) Avoid additional
memory to run on systems with little memory, like the GPU.

Our batch-based solution is outlined in a basic version in
Alg. 4 and its full version in Alg. 5 and Fig. 1. The execution is
split across batches of input data, which dynamically become
available as the execution progresses through the graph. All
batches are processed independently when possible, but wait
at signaling points to ensure correctness.

A. Speculative Discovery and Sorting

Given the effectiveness of the straightforward single-
threaded RCM algorithm (Alg. 1), we follow its implemen-
tation in every batch, but pair it with speculative execution
in Alg. 4. The three main steps of our RCM are discovering
(ln 2) children of all nodes in a batch, sorting (ln 3) them
and writing the result to the output array (ln 9). Dependencies
arise between batches at two points: Discovery is only correct
if all previous nodes in the RCM order already discovered
their children and marked them accordingly. Writing the output



completed

output

discovery

speculative discovery

confirmed

removed

speculative

undiscovered

Fig. 1: Our batch-based RCM algorithm splits computation across batches that are processed in parallel (in this example all
green, yellow and orange batches are concurrently active). Active batches may stem from multiple levels. Batches are in either
of four states (speculative discovery, discovery, output or completed) and forward their states along a signal chain (highlighted
arrows). Edges are discovered in a speculative manner (orange edges), which may require confirmation at a later point. Only
those edges that contribute to the RCM order are kept (dark). To increase parallelism, we sort speculatively discovered batches.

is only possible when all previous batches know the exact
number of outputs, i.e., the number of owned child nodes.

a) Discovery: Waiting for all previous batches to com-
plete discovery is overly restrictive, as only a single batch
could run discovery at a time. To circumvent this issue, we
use speculation: a batch that starts execution immediately
performs discovery using atomicMin operations to mark nodes
as discovered. The atomicMin ignores marks of previous
batches and overwrites those of successors. For all discovered
nodes (c), we immediately compute the valence and store it
in an array in scratchpad memory for efficient cache access.

b) Sorting: In the next phase, we sort the speculatively
discovered nodes. As sorting is typically one of the more costly
steps, we also want to increase parallelism here rather than
wait for speculative discovery to be confirmed. For efficient
sorting, we keep information about which nodes belong to
which parent (pc) and sort them in successive sort operations.

c) Rediscovery: Before writing the sorted results to the
permutation array, we have to remove those nodes from the
temporary array that are discovered by a predecessor batch and
thus we need to introduce a waiting point (ln 4). Afterwards,
we rediscover nodes, i.e., recheck all nodes in the array and
remove those that have been discovered by a predecessor.

d) Output: To write the result, each batch has to wait
for the output position, i.e., the sum of nodes written by all
predecessor batches. Finally, new batches for the output nodes
are generated and added to a work queue. To ensure the correct
execution order of batches and avoid algorithm stalls, the work
queue follows the order of nodes in the output. After finishing
a batch, a worker takes the next available batch from the queue.

e) Signal & Wait: The wait functionality is implemented
using a simple signal per batch. We store batches according
to their desired execution order in the queue and keep them
available until the batch is completely processed. Therefore, a
batch can signal its successor and store data alongside it.

B. Signaling and Speculation Avoidance

The previously outlined algorithm is not overly effective.
We present an advanced version in Alg. 5, where we represent
each batch’s predecessor state either as Discovered, Counted
or Completed and dynamically react to these states. A non-
blocking wait allows us to switch to other jobs.

a) Early discovery: Even if all predecessor batches have
completed discovery before a batch starts, our basic batch-
based RCM version would run a rediscovery. To this end, we
start by loading the signaled state before the first discovery
attempt and thus avoid rediscovery later if possible. Right after
discovery, a batch signals the next batch the discovery state,
if itself has been signaled Discovered, as the entire chain of
batches up to this point have completed discovery. This also
happens if the batch requires rediscovery, i.e., if it was only
signaled during or after its initial discovery, because it still
marked its nodes. This is a significant advancement from the
basic approach, where signaling only happens after sorting
and rediscovery. Before sorting, we perform rediscovery if the
batch has been signaled during or after discovery. This lets
us remove nodes before sorting and create a dense temporary
array after sorting, which can be written without compaction.

b) Late discovery: Independently of whether the batch is
signaled Discovered or not, we continue sorting and ensure



Algorithm 5: Batch RCM

1 Function BatchRCM (b) // batch input n
2 searly ← signaled(b) // read early signal
3 {c, pc} ← discover(b) // discover children
4 smid ← signaled(b) // recheck signal
5 if searly ≥ Discovered then
6 signal(Discovered) // all prev. discovered
7 fthis ←signalCount(smid, c, b)
8 else if smid ≥ Discovered then
9 searly ← smid

10 signal(Discovered) // all prev. discovered
11 c← rediscover(c) // recheck discovered
12 fthis ←signalCount(smid, c, b)

13 sort(c, pc)
14 wait(Discovered) // wait for discovered
15 if smid < Discovered then
16 signal(Discovered)
17 c← rediscover(c)
18 smid ← signaled(b)
19 fthis ← signalCount(smid, c, b)

20 wait(Counted) // wait for output position
21 if smid < Counted then
22 smid ← signaled(b)
23 fthis ← signalCount(smid, c, b)

24 if searly < Discovered then
25 o← trimAppend(c) // trim removed children
26 else
27 o

∪← c

28 wait(Completed) // ensure overhang chains
29 if Overhang(fthis) then
30 signal(Completed)

31 addNewBatches(fthis) // add batches to queue

32 Function signalCount(s, c, b)
33 if s ≥ Counted then // need prev. output position

/* combine output with previous batch? */
34 fprev ← Overhang(b);
35 fthis ← countBatches(c, fprev)
36 if Overhang(fthis) then // combine /w next?
37 signal(Counted)
38 else
39 signal(Completed) // no need to wait

40 return fthis

that the batch has been signaled Discovered afterwards,
before continuing with the rediscovery (in case it is still
needed). If we rediscover after sorting, we only mark the
removed nodes in the array and compact during output (ln
25), potentially saving many memory operations.

The second signal, Counted, can be sent earlier than in our
basic version as well. As soon as a batch is signaled Counted
and it has run a successful discovery, it can already signal the
next batch, as the exact number of outputs is already known at
this point. Thus, the output positions can often be forwarded
before sorting to create additional execution independence.

C. Batch Generation and Combination

Batches should ideally comprise a constant number of nodes
to provide sufficient workload and parallelism for our many-

core version. Furthermore, the number of discovered child
nodes should not exceed the temporary memory requirement
for c. If a graph is highly connected, we want to reduce
the batch size to reduce the number of potential temporary
elements. To build batches of child nodes, we rely on the
information from discovery: as we need the valency for
sorting, we know the exact number of temporary elements
required when combining nodes to batches in the final step
(ln 31). We already compute the batch membership while
writing the outputs (ln 24-27 - not shown here for simplicity),
introducing batch boundaries when the number of output nodes
reaches the batch size or the sum of all valencies to this point
overflows temporary memory bounds. If a single node would
overflow temporary memory bounds, we create a single node
batch. This requires an extension of scratchpad memory and
potentially reduce cache efficiency. Splitting a node among
threads would be more complicated as there is no simple way
to distribute nodes before sorting. In our experiments on the
CPU, the increased scratchpad memory requirements did not
lead to a measurable performance hit.

a) Early Generation: The previous outline works but
synchronizes batch generation from one batch to the next,
as the number of batches is only known when scanning
through the ordered output. However, we can already estimate
the number of required batches after a successful discovery,
as we already know the exact number of output nodes as
well as the sum of their valences. Only their order and thus
the possible combination is unknown. As we already accept
scratchpad memory overload in some cases, we assume that
we can optimally pack the nodes into batches. When signaling
Counted to the next batch, we include the number of output
batches that will be generated and thus the batch offsets in the
queue. We ensure that we balance any surplus on temporary
elements among the generated batches: while the sum of
valences of remaining nodes divided by the to-be-generated
batches is above the valence sum of the current batch, we add
further nodes. An alternative is to overestimate the number of
generated batches and add empty batches if they cannot be
filled, which we use for our GPU implementation.

b) Batch Combination and Load Balancing: In parallel
algorithms it is important to distribute the amount of available
work approximately equal among the available workers to
achieve high throughput. This is particularly challenging when
work is generated dynamically during execution as in RCM,
where the number of outputs per batch can vary drastically.
Especially when reaching the end of reordering or if the front
of discovery narrows, the number of child nodes per batch
might fall significantly below the number of input nodes and
leave a large part of the generated batch unoccupied. As
starting batches and managing their data induces an overhead,
very small batches can significantly reduce performance. To
tackle this issue, we support overhangs to the next batch, i.e.,
output nodes can be forwarded, such that the next batch adds
the overhang to its first generated batch, thereby balancing the
number of nodes per batch.

To this end, we again rely on the node count and the



sum of valences after a successful discovery. If the number
of output nodes and the amount of temporary elements is
below half of what a batch can hold, we forward the elements
to the next batch. If a batch forwards nodes, it only sets
the Counted state and informs the next batch how many
nodes and temporary elements are being forwarded. The next
batch includes them when creating its first batch. As batches
only reference ranges in the output array, Completed is
signaled after writing the output. Therefore, a not yet written
overhang is never referenced. Note that chains of overhangs
can be generated, and thus, Completed is only signaled after
also being received. Also, nodes on different levels (of the
corresponding BFS) can be combined into a single batch.
Actually, our approach does not contain the notion of levels.

D. Multi-batch Execution and Termination

To further reduce stalls we avoid explicit waits for signals.
Instead of stalling the execution when waiting for Discovered,
Counted or Completed, we check the current signal and may
draw a new element from the work queue. We switch back
to the previous batch when reaching a wait point with the
new batch. While the number of concurrent batches can be
chosen arbitrarily, the required additional temporary memory
increases with every additional batch. Later batches cannot
overtake earlier ones for Discovered, however it is possible to
finish a batch while a previous is still waiting for a Completed
signal, as signalCount may send Completed early on.
Thus, even within one worker, batches can finish out of order.

Interestingly, the batch-based RCM implementation can
terminate while batches are still in the queue. If the number
of written output nodes is equal to the number of nodes,
the permutation is done. Nodes that have been visited for
the first time may still reside in the queue, as the fact that
they do not have un-visited children was not known during
batch generation. Thus, we include a flag in our batch queue
to allow for early termination. Whenever a worker tries to
dequeue a new batch, this flag is checked first and if it is set,
the worker simply terminates execution as if all batches were
finished. Note that workers will still finish batches that they
dequeued before the early termination flag was set and will
only exit when they try to get a new one from the queue.
Nevertheless, these batches do not generate any output, as all
their child nodes were already visited by earlier batches. As
we draw batches in order from the queue, early termination
cannot break the signal chain.

V. MANY-CORE IMPLEMENTATION

Our algorithm works well for multicore processors with
single threads as workers as well as for many-core processors,
such as the GPU, where we use a cooperative thread array
(thread-block) as worker. Translating the batch-based algo-
rithm to the GPU is straightforward as long as computation can
stay in scratchpad memory (shared memory in CUDA terms).

We use a ring buffer as a work queue, data and signals
are set using explicit non-locally cached writes. We use busy
waiting with sleep operations (supported on Volta+) to back

off. Processing of a batch happens exclusively in scratchpad
memory. General batch information, i.e., loading batch start
and end pointers, querying the signal state, as well as signaling
the next batch, are handled by the first thread of the block.

A. Parallel Batch Processing

To perform discovery in parallel, we first query the number
of child nodes for each parent (one thread per parent), store the
offsets to the children in scratchpad memory and compute the
maximum child count across the entire thread-block. Based
on this count, we adjust the number of threads per parent
for discovery. We use the last power of two smaller than the
maximum child count for each parent. In this way, we achieve
coalesced memory access for batches with large child counts
and reduce the number of stalled threads for batches with
nodes that have few children. As threads query the children,
they use atomicMin for marking and then add the found
children to a scratchpad array, using atomicAdd to reserve
a unique spot in the array. Rediscovery is straightforward, as
we simply recheck the marks of all currently stored nodes.

For sorting, we use CUB radix sort with a local parent id
in conjunction with the child valence as sort key. This also
generates the correct order across children of different parents,
which was destroyed by the atomicAdd. As the number of
elements to sort varies, we switch between different sort
implementations with one to eight elements per thread.

Before writing nodes to the output, we perform a prefix sum
to determine the correct output locations as nodes may have
been removed through rediscovery. We use a prefix sum over
the valences to determine the temporary memory requirements
when combining nodes to batches. We use a single prefix sum
for both computations, using subsets of bits for the offset and
the sum. Depending on the number of threads, the maximum
number of temporary elements and the maximum valence, we
either use 32 or 64 bit values. To generate new batches, a
single warp moves across the prefix sum result and determines
batch boundaries, i.e., where an overflow of the batch size or
temporary memory requirements is reached.

B. Memory Limits

Overflowing scratchpad memory is a major issue on the
GPU, as the scratchpad memory allocation cannot be adjusted
dynamically and we want to avoid spilling to global memory.
First, we avoid running out of pre-allocated batches by adding
a safety margin. We count the number of child nodes that
actually reach beyond the available temporary memory and
clamp their valence sum contribution to exactly the temporary
memory requirements, as they will receive their own batch
anyway. From the resulting sum, we compute the ideal number
of batches and multiply it by two: In the worst case, a batch
is half filled and the next node just does not fit and creates
another half filled batch. In these cases, we simply add empty
batches to the queue—in the worst case 50% of batches are
empty. In practice we saw performance fluctuations of 1-3%
when using a per-matrix tuned multiplication factor, indicating
that empty batches are discarded efficiently.



The last issue are single nodes exceeding scratchpad mem-
ory. Often, a number of children has already been discovered
by predecessor batches and we can operate in scratchpad
memory, although the number of children would overflow the
available memory. To this end, we run a first discovery step,
count the number of nodes that should be handled by the batch
and create a valence histogram. If we can directly work on the
nodes, we follow the standard path. Otherwise, we select as
many histogram bins as possible (starting from the smallest)
to fill up scratchpad memory, chunking the execution. This is
possible, because we guarantee that large batches only contain
a single parent node (compare Sec. IV-C).

We limit the histogram to min and max valence, found
during discovery, to make more efficient use of our 128
histogram bins. Still, nodes of different valence can end up
in the same bin and a single bin may contain more nodes than
can be handled at once. Therefore, we follow these strategies:
Valence distributions are often skewed, i.e., many nodes of a
small valence range and a few larger or smaller valences. Thus,
we compute the mean valence and linearly remap valences
such that the mean is in the middle of the histogram. While
this solved more than 95% of all issues in our test set, it might
still fail. In this case, we create histograms hierarchically,
computing a new histogram for a single bin. At the lowest
level, if reached, bins only contain a single valence and we
can directly copy all nodes in a bin from the input matrix to the
permutation array without going through scratchpad memory.

VI. EVALUATION

We ran our experiments on an AMD Ryzen 3900X (12
cores, 64MB cache), 32GB RAM and an NVIDIA TITAN
V (12GB VRAM) with Linux, gcc 10.2 and CUDA 11.0.3.
Our test-set was randomly selected from the SuiteSparse
Matrix collection [34] to include symmetric matrices from
various application fields with largely different number of non-
zero entries and sparsity patterns. Our framework is publicly
available at https://github.com/GPUPeople/ParallelBatchRCM.

A. Approaches

Unfortunately, there is little RCM code publicly available
and we could not find a single GPU-based implementation.
Rodrigues et al. provided us with their Reorderlib [15], which
offers multiple variants to perform RCM, including a leveled
RCM and an unordered RCM version. We use the latter in
this evaluation as it performed significantly better. According
to the authors, the original implementation of the unordered
RCM [13] is not available. We also include HSL [31] as an
alternative baseline. NVIDIA provides RCM via cuSolver [35],
which is, however, completely CPU-based and single threaded.
We also compare the MATLAB’s RCM implementation.

We use two baselines: a serial CPU-only RCM (CPU-RCM,
Alg. 1) and a leveled RCM on the GPU, which uses CUB for
sorting (GPU-RCM, Alg. 2). Furthermore, we show results of
a simplified version (CPU-BATCH-BASIC, Alg. 4). Lastly, we
provide data for our fully optimized parallel versions on the
CPU (CPU-BATCH) and the GPU (GPU-BATCH).

B. Core RCM Performance

Data about our test-set as well as performance of the core
RCM implementations is shown in Tab. I. Our single-threaded
CPU-RCM outperforms HSL significantly. We attribute this to
three facts: First, we may benefit from more efficient sorting
algorithms, now present in the C++ STL. Second, modern
C++ compilers may be able to optimize better for current
hardware. Third, using scratchpad memory to keep temporary
data may increase cache hit rates. Nevertheless, we use HSL
as a baseline to allow for better comparison to previous work.

The data indicate that our versions provide the fastest
RCM across the tested matrices. As expected, there is a clear
difference between smaller and larger matrices, see Fig. 2:
For small matrices with a limited BFS front width, CPU-
RCM clearly performs best, as parallelization overhead does
not amortize. For medium sized matrices, CPU-BATCH and
GPU-BATCH start to outperform CPU-RCM by 2× - 4×.
GPU-RCM as well as Reorderlib are already far off. For
large matrices, which provide a higher parallelism, our parallel
implementations achieve speedups of 4× or more compared
to CPU-RCM, which in turn is about 5.8× times faster than
HSL on average over our test-set. Interestingly, Reorderlib
always falls short of CPU-RCM. GPU-BATCH and CPU-
BATCH are quite similar in performance, indicating that GPU-
BATCH eliminates the need to move matrices from the GPU
back to the CPU for reordering. At the same time, GPU-RCM,
especially for matrices with limited parallelism, is a lot slower
than GPU-BATCH. Note that, although the main difference
from CPU-BATCH-BASIC to CPU-BATCH is the improved
signaling mechanism, this results in an average speed-up of
1.14× and up to 1.53× for large matrices.

One very interesting observation is that we achieve a
superlinear speedup for mycielskian18 compared to CPU-
RCM. Deeper analysis reveals that this performance advantage
of CPU-BATCH and GPU-BATCH comes from our early
stopping detection, while batches are still in the queue. Due
to the special structure of some matrices, many times more
nodes are put into the queue than actually need to be processed
as shown in Fig. 3. The difference between Generated and
Dequeued batches is due to early termination (Sec. IV-D),
as batches are left in the queue when the permutation is
already complete. While in most cases more than 99% of
the generated batches are also dequeued, there are matrices
where early termination can reduce the number of executed
batches significantly, e.g., to 16% on gupta3 or even to < 1%
on mycielskian18. The reduction in Executed compared to
Dequeued is due to empty batches, see Sec. V-B, which results
in approximately 36% of all dequeued batches being discarded.

While we could not directly compare against the linear
algebra-based RCM version [14], we look at the overall run-
times for nlpkkt240, which they also include in their test-set.
CPU-RCM running on a single core on our machine requires
4.6 s, CPU-BATCH 0.9 s with 24 threads. The linear algebra-
based RCM [14] needs 3.2 s on 54 cores and 1.2 s on 4056
cores, clearly showing the advantage of our implementation.



Name nr /nc NNZ max avg init. reord. HSL Reorder- tc CPU- CPU-B.- tc CPU- tc GPU- GPU-
valence BFS front BW BW lib RCM BASIC BATCH RCM BATCH

bcspwr10 5.3k 22k 14 186 5189 285 1.28 1.98 1 0.26 0.33 1 0.33 1 3.81 1.09
bodyy4 17.5k 122k 9 170 16818 248 1.49 2.24 1 0.29 0.78 1 0.76 1 10.74 2.89
benzene 8.2k 243k 37 1303 2898 1905 2.11 2.17 1 0.30 0.56 5 0.64 3 4.55 0.43
ncvxqp3 75.0k 500k 15 1054 69996 14154 11.34 11.44 1 2.38 2.36 10 2.33 8 7.56 0.91
ecology1 1.0M 5.0M 5 667 1000 1000 154.95 190.84 1 26.81 31.13 1 40.61 1 541.21 57.21
gupta3 16.8k 9.3M 14672 7939 16744 15584 59.00 21.73 3 5.64 1.18 6 1.67 2 33.10 1.16
SiO2 155.3k 11.3M 2749 14340 55068 20209 104.41 75.64 8 16.30 12.09 7 11.10 8 22.99 9.71
CurlCurl 3 1.2M 13.5M 54 12502 26759 20045 179.05 271.25 2 44.74 40.79 9 31.41 13 78.98 17.94
nd12k 36.0k 14.2M 13 4596 34517 6341 100.52 26.73 8 12.47 9.14 6 8.18 7 22.90 15.49
Si41Ge41H72 185.6k 15.0M 519 18438 31518 26518 144.77 72.66 6 22.82 16.69 7 15.30 7 28.04 16.92
great-britain osm 7.7M 16.3M 662 2334 7693184 4677 1274.45 — — 291.08 326.02 1 270.17 3 3875.03 223.12
human gene2 14.3k 18.1M 8 6414 14257 12037 150.54 56.28 2 11.65 9.29 6 8.69 6 29.49 20.63
Ga41As41H72 268.1k 18.5M 7229 23496 40195 33379 189.44 97.18 5 30.06 21.93 10 19.36 12 34.00 20.63
bundle adj 513.4k 20.2M 702 5094 510044 20738 87.54 144.39 2 29.76 22.41 8 27.17 8 341.25 16.49
nd24k 72.0k 28.7M 12588 8156 68114 11291 200.89 46.14 12 23.77 16.41 7 15.59 8 36.16 31.24
coPapersDBLP 540.5k 30.5M 520 159025 539587 254848 392.93 — — 65.34 27.32 12 26.42 12 47.15 31.60
Emilia 923 923.1k 41.0M 3299 12280 17279 16883 194.62 213.01 23 47.06 45.44 10 30.71 13 89.60 49.25
delaunay n23 8.4M 50.3M 57 10403 8382693 16777 1557.97 — — 271.13 153.71 15 132.41 10 828.79 79.03
hugebubbles-00020 21.2M 63.6M 28 3211 21188550 4575 9377.19 — — 1598.78 1241.05 12 905.41 6 8490.28 248.43
audikw 1 943.7k 77.7M 3 16586 925946 34400 377.90 244.46 14 118.25 58.99 14 49.58 12 139.62 85.55
nlpkkt120 3.5M 96.8M 345 51894 1814521 86876 1411.13 837.78 13 383.20 203.19 17 132.63 18 200.00 114.05
Flan 1565 1.6M 117.4M 28 11159 20702 20849 510.34 339.62 23 168.81 89.83 13 68.62 14 223.86 134.16
nlpkkt160 8.3M 229.5M 81 92232 4249761 154236 3675.97 1912.27 24 1166.98 436.58 22 286.23 18 442.00 268.57
mycielskian18 196.6k 300.9M 28 98300 196590 196589 2770.78 — — 213.77 8.73 20 8.58 17 468.59 14.02
nlpkkt200 16.2M 448.2M 98303 144089 8240201 240796 7335.28 3402.59 24 2547.49 784.54 24 540.97 24 814.90 520.01
nlpkkt240 28.0M 774.5M 28 207467 14169841 346556 13218.79 5644.68 23 4574.78 1283.31 24 938.80 24 1534.99 900.77

TABLE I: Number of rows/columns (nr/nc), number of non-zeros (NNZ), maximum node valence, the average width of the
BFS front and initial as well as reordered bandwidth for each matrix. Best timing of the core RCM implementation (from
1− 24 threads) for each approach in ms as well as the thread-count (tc) that achieved that timing. Best CPU time bold. Best
GPU time always GPU-BATCH. MATLAB and cuSolver excluded, as they perform start node finding automatically.

0.25

0.5

1

2

4

8

16

32

64

128

256

Sp
ee

d-
U
p

CPU CPU-Batch-Basic CPU-Batch GPU GPU-Batch Reorderlib HSL

Fig. 2: Speed-up of each approach compared to HSL in log-scale.

C. Overall Performance

While our work focuses on the core RCM, we rely on a sim-
ple peripheral node finding strategy, as described in Sec. III-0d,
for comparisons of our CPU versions with Matlab and cu-
Solver, as they do not separate the core RCM implementation
from initial node finding. For our GPU versions, we use our
complete RCM implementation for node finding, but disable
sorting, which natively leads to a parallel BFS. However, we
did not apply any optimization, thus all peripheral node finding
results should only be considered a reference point and focus
is put on the RCM performance.

As can be seen in Fig. 4, even with inefficient peripheral
node finding, our approaches achieve the best performance,
outperforming cuSolver by multiple orders of magnitude and
still outperforming Matlab with a significant margin; even
CPU-RCM is faster than Matlab. Also note that the core RCM
is always significantly faster than our naive peripheral node
finding, showing that our optimized versions clearly work well.
Especially when looking at GPU-BATCH, the core RCM step
only makes up a fraction of the overall runtime.

Note that transferring a matrix from the GPU to the CPU
for reordering and back would incur additional overhead. To



0%

20%

40%

60%

80%

100%

Dequeued Executed Generated

Fig. 3: Early termination enables us to discard all batches in the queue as soon as the permutation is complete. Furthermore,
batches, which where generated and enqueued to allow early progression for the next batch but where not filled due to over-
estimation of the number of output nodes, do not have to be executed and can be discarded. Numbers given for GPU-BATCH.

33 29 29

55

23

49 51

20
6

20
2

19
2

18
6

12
5

43
2

19
9

11
4

10
7

11
2

44
5

12
1

22
9

15
6

0

50

100

150

200

250

300

350

400

450

500

CP
U

CP
U
-B
.-B

as
ic

CP
U
-B
at
ch

G
PU

G
PU

-B
at
ch

Re
or
de

rli
b

M
at
la
b

cu
So

lv
er

CP
U

CP
U
-B
.-B

as
ic

CP
U
-B
at
ch

G
PU

G
PU

-B
at
ch

Re
or
de

rli
b

M
at
la
b

cu
So

lv
er

CP
U

CP
U
-B
.-B

as
ic

CP
U
-B
at
ch

G
PU

G
PU

-B
at
ch

Re
or
de

rli
b

M
at
la
b

cu
So

lv
er

gupta3 CurlCurl_3 bundle_adj

m
s

Timing Peripheral Overhead

11
5271
9

16
54

39
6

39
5

38
0

21
5

17
5

56
2

34
3

35
08

50
6

44
7

43
7

37
2

31
7

63
2 81
2

12
41

10
61

99
0

53
6

45
0

16
95

12
12

0

500

1000

1500

2000

2500

3000

3500

CP
U

CP
U
-B
.-B

as
ic

CP
U
-B
at
ch

G
PU

G
PU

-B
at
ch

Re
or
de

rli
b

M
at
la
b

cu
So
lv
er

CP
U

CP
U
-B
.-B

as
ic

CP
U
-B
at
ch

G
PU

G
PU

-B
at
ch

Re
or
de

rli
b

M
at
la
b

cu
So
lv
er

CP
U

CP
U
-B
.-B

as
ic

CP
U
-B
at
ch

G
PU

G
PU

-B
at
ch

Re
or
de

rli
b

M
at
la
b

cu
So
lv
er

Emilia_923 audikw_1 nlpkkt120

m
s

Timing Peripheral Overhead

70
45

92
16

Fig. 4: The core RCM timing of each approach, see also Tab. I, in dark violet (cuSolver & MATLAB also include pseudo-
peripheral node finding), pseudo-peripheral node finding in lilac and potential overhead of GPU/CPU interaction in light violet.
For small matrices, CPU-RCM, CPU-BATCH and GPU-BATCH are very close in performance, closely followed by Reorderlib
and MATLAB, while cuSolver is orders of magnitudes slower. GPU-RCM cannot exploit the available parallelism well. For
large matrices, GPU-RCM and GPU-BATCH clearly highlight their advantages. CPU-BATCH outperforms CPU-RCM in all
cases, with CPU-BATCH-BASIC being in between. MATLAB comes next, followed by Reorderlib and a distant last is cuSolver.

judge whether it makes sense for any matrix to be transferred
for reordering, we added the transfer overhead for the CPU
approaches. Only for the smallest matrices, the overhead of
transfer amortizes (and only when using our CPU-RCM),
whereas the gains are negligible.

D. Performance Scaling

To analyze the scaling, we look at CPU-BATCH with
increasing thread counts across all matrices in Fig. 5a and
Fig. 5b, where we plot the absolute speed-up against the CPU-
RCM and a normalized speed-up per matrix respectively.

Overhead is clearly a factor in running a parallel algorithm,
as the first column in Fig. 5a shows: For the smallest matrices
(≤ 5M NNZ), performance drops by up to 60% by simply
managing batches and using atomic operations for discovery.
For larger matrices, adding a few threads amortizes the over-
head, leading to speed-ups of about 1.5× for small matrices

(5M < NNZ ≤ 30M ), 2.1× for medium-sized (30M < NNZ
≤ 100M ) matrices, and up to 4.9× for large matrices (NNZ
> 100M ). Again, mycielskian18 is a clear outlier due to the
effectivity of early stopping in this matrix. For great-britian-
osm and hugebubbles-00020, the parallel approaches do not
scale well. This is likely due to a narrower average BFS front
through the matrix (see Tab. I), i.e., less available parallelism.

As shown in Fig. 5b, increasing the thread count may also
reduce performance, leading to a somewhat diagonal pattern
in the plot. Performing heavy parallel speculative discovery
may lead to wasted sorting efforts and increased memory
congestion. While the plot also indicates that our approach
scales well for larger matrices, it may be reasonable to limit
parallelism and potentially stall threads if many rediscoveries
fail, i.e., if speculation is generating parallelism that is not
backed by the matrix structure.

Fig. 6 shows the percentage of the total number of cycles



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Threads

bcspwr10
bodyy4
benzene
ncvxqp3
ecology1
gupta3
SiO2

CurlCurl_3
nd12k

Si41Ge41H72
great-britian-osm

human_gene2
Ga41As41H72

bundle_adj
nd24k

coPapersDBLP
Emilia_923

delaunay_n23
hugebubbles-00020

audikw_1
nlpkkt120
Flan_1565
nlpkkt160

mycielskian18
nlpkkt200
nlpkkt240
AVERAGE

M
at
ric

es
0.8 0.8 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.4
0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.3 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.3
0.5 0.6 0.7 0.7 0.8 0.9 1.0 1.0 0.9 0.8 0.9 0.9 0.8 0.7 0.4 0.4 0.3 0.3 0.2 0.2 0.3 0.2 0.2 0.1
0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1.9 3.4 1.8 1.7 1.7 1.6 1.5 1.6 1.5 1.4 1.3 1.2 0.9 0.9 0.9 0.9 0.7 0.7 0.5 0.4 0.4 0.6 0.4 0.7
0.7 0.8 1.0 1.1 1.3 1.4 1.4 1.5 1.3 1.4 1.4 1.2 1.1 1.3 1.0 0.9 1.0 0.9 0.7 0.9 0.8 0.7 0.7 0.6
0.7 0.7 0.8 1.0 1.1 1.2 1.3 1.4 1.3 1.4 1.3 1.4 1.4 1.3 1.1 1.2 1.2 1.0 0.9 0.9 0.9 0.9 0.9 0.8
0.5 1.1 1.1 1.2 1.3 1.4 1.5 1.5 1.5 1.1 1.2 1.1 1.2 1.2 0.9 1.1 0.8 0.9 1.0 0.7 0.7 0.7 0.6 0.6
0.9 0.9 1.1 1.3 1.4 1.5 1.5 1.4 1.4 1.5 1.4 1.4 1.3 1.3 1.4 1.1 1.1 1.0 1.0 1.0 0.9 1.0 1.0 0.9
0.9 1.0 1.1 1.1 1.0 1.0 0.9 0.9 0.8 0.7 0.7 0.7 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.5 0.9 1.1 1.2 1.2 1.3 1.3 1.3 1.3 1.2 1.3 0.9 1.1 1.1 1.0 0.9 1.0 0.9 0.9 0.8 0.7 0.7 0.7 0.7
0.6 0.9 1.0 1.2 1.3 1.4 1.5 1.4 1.4 1.5 1.5 1.6 1.4 1.4 1.4 1.3 1.4 1.4 1.4 1.2 1.1 1.1 1.0 0.9
0.6 1.0 0.9 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 0.9 0.8 0.9 0.8 0.7 0.7 0.7 0.7 0.6 0.6 0.6
0.5 0.9 1.1 1.2 1.3 1.4 1.5 1.5 1.4 1.2 1.3 1.2 1.3 1.2 1.0 1.1 1.0 1.0 0.9 1.0 0.9 0.9 0.7 0.8
0.7 1.1 1.4 1.6 1.8 1.9 2.1 2.2 2.2 2.3 2.4 2.5 2.1 2.2 2.3 2.1 1.9 2.0 1.7 2.0 1.7 2.0 1.7 1.7
0.6 1.0 1.0 1.1 1.2 1.3 1.4 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.2 1.3 1.2 1.1 1.0 1.0
0.8 1.1 1.3 1.6 1.7 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.8 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.3 1.2
0.9 1.3 1.6 1.6 1.7 1.8 1.7 1.7 1.6 1.5 1.4 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2
0.8 1.3 1.4 1.5 1.8 1.8 1.9 2.1 2.2 2.2 2.2 2.4 2.3 2.2 2.3 2.2 2.2 2.2 2.0 1.9 2.0 1.9 1.9 1.7
0.9 1.1 1.4 1.6 1.7 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.7 2.7 2.8 2.8 2.9 2.9 2.9 2.7 2.7 2.6 2.5 2.7
0.8 1.3 1.5 1.6 1.8 1.9 2.0 2.1 2.2 2.3 2.3 2.4 2.5 2.5 2.3 2.3 2.4 2.4 2.2 2.2 2.1 2.1 2.1 2.0
1.0 1.4 1.6 1.8 2.0 2.3 2.6 2.8 3.0 3.2 3.4 3.5 3.6 3.8 3.9 3.9 4.1 4.1 4.1 4.1 4.0 3.9 3.7 3.9
11 15 24 24 24 24 22 22 23 21 22 22 23 23 22 23 25 21 20 19 21 21 21 20
0.9 1.4 1.8 1.9 2.1 2.4 2.7 3.0 3.2 3.5 3.7 3.8 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.7 4.6 4.6 4.7
0.9 1.4 1.8 2.0 2.2 2.5 2.7 3.0 3.3 3.5 3.7 3.9 4.0 4.1 4.3 4.4 4.5 4.5 4.6 4.7 4.7 4.8 4.7 4.9
0.9 1.4 1.7 1.8 2.0 2.2 2.3 2.4 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5

(a) Heatmap depicting speed-up of CPU-BATCH over CPU-RCM
for different thread counts on our test-set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Threads

bcspwr10
bodyy4

benzene
ncvxqp3
ecology1

gupta3
SiO2

CurlCurl_3
nd12k

Si41Ge41H72
great-britian-osm

human_gene2
Ga41As41H72

bundle_adj
nd24k

coPapersDBLP
Emilia_923

delaunay_n23
hugebubbles-00020

audikw_1
nlpkkt120
Flan_1565
nlpkkt160

mycielskian18
nlpkkt200
nlpkkt240
AVERAGE

M
at

ric
es

0.0

0.2

0.4

0.6

0.8

1.0

norm
alized per-thread scaling (higher = better)

(b) Heatmap depicting a per-matrix, per-thread scaling, normalized
by minimum and maximum speed-up per matrix.

Fig. 5: Scaling heatmaps for our CPU-BATCH version compared to CPU-RCM. Matrices are sorted by increasing NNZ elements
from top to bottom. The absolute heatmap on the left clearly shows that the parallel version profits from larger input sizes,
while the overhead of parallelization can not be amortized for very small inputs. The relative heatmap on the right shows, that
CPU-BATCH can clearly take advantage of an increased thread count, if enough parallel workload is available.

4.2E+8
2.8E+8
2.3E+8
2.1E+8
1.9E+8
1.7E+8
1.5E+8
1.4E+8
1.4E+8
1.3E+8
1.3E+8
1.3E+8
1.2E+8
1.2E+8
1.2E+8
1.2E+8
1.2E+8
1.2E+8
1.1E+8
1.2E+8
1.1E+8
1.1E+8
1.1E+8
1.1E+8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

3

5

7

9

11

13

15

17

19

21

23

Relative Cycles

Th
re

ad
s

Relative Cycles per Stage and Thread-Count

Discover Sort Rediscover Signal addNewBatches Stall

Fig. 6: Relative number of cycles spent in different stages of
CPU-BATCH, averaged over the whole test-set for different
thread counts. Average total cycles per thread over the com-
plete test-set given on the right for each thread count.

spent in each stage of CPU-BATCH averaged over the full
test-set for different thread counts. For small thread counts, the
majority of cycles, e.g., 88.2% with two threads, is spent on
Discover due to the atomics used to mark the nodes. While the
relative share of compute cycles for Discover and Sort reduces
with increasing thread counts, their absolute numbers summed
over all threads increases: Discover with atomics comes with
interference between threads; Sort becomes more costly as the

amount of data to be sorted increases due to speculation. In
comparison to Discover, Rediscover always requires a very
small share of the cycles (1.3% on average over all thread
counts). While the former needs to perform atomic operations
to mark nodes as discovered by the batch, the latter only needs
to check which child nodes were discovered by a predecessor
and mark them in local memory for compaction when writing
the output. The time spent on Signal is virtually negligible
in all cases. addNewBatches includes both writing the output
nodes and adding them to the queue. The relative increase in
cycles with increasing thread counts can be attributed to inter
thread communication when adding queue elements. Clearly,
using a larger number of threads increases waiting times for
our test set: Stall captures queue fetch times including waiting
for new elements to be added to the queue. With 12 threads,
already almost half the cycles (48%) are spent idling and even
65% with 24 threads. Again, note that this is an average over
all matrices, including small matrices and matrices with a
narrow front, i.e., matrices with little inherent parallelism.

E. Limitations

While our approaches performs very well throughout the
test-set, there are some exceptions as discussed above. Clearly,
for very small matrices an efficient serial implementation like
our CPU-RCM will perform best. However, there are also
larger matrices for which CPU-BATCH and GPU-BATCH
do not scale well. Unfortunately, that means that the NNZ
of a matrix alone are not a good predictor of the available
parallelism. The average BFS front gives a better indication
about the available parallelism and about how well our parallel
versions perform. While it is costly to compute in general, it



could be determined alongside a peripheral node and be readily
available before starting the core RCM algorithm. Other than
the available parallelism, which is related to the BFS front,
we could not find any properties of the matrix structure that
may determine the run time of our algorithm.

VII. CONCLUSION

In this work we proposed a new parallelization of RCM
reordering, which scales well with the available parallelism in
the data and the number of available threads. Our approach
dynamically adapts to the varying parallelism at runtime and
redistributes work along a signal chain in order to balance the
load between threads. Confirmation messages along the chain
enable parallel progress as soon as requirements are fulfilled.
Pressure on the memory bus is reduced by holding data locally
until it is confirmed to be ready to be written to memory.

Our work executes on multicore and many-core processors
alike, thus, for the first time, enables us to reorder matrices
directly on the device they arise from, eliminating data transfer
overheads and potential idle times. We present the first ever
GPU parallelization of RCM, making it possible to integrate
reordering mechanisms into operation sequences on the GPU.

Similar strategies as we use for RCM are viable for pseudo-
peripheral node finding. Directly applying our RCM approach
as BFS replacement already achieved good performance. Still,
an in-depth treatment of pseudo-peripheral node finding is
needed to not bottleneck our RCM implementation.

While our approach is currently limited to a single multicore
or many-core device, its intrinsic properties lend themselves
to multi-device and multi-node extensions, transmitting signals
across devices/nodes. We hope that this work will be the first
step of RCM into modern supercomputing environments.

REFERENCES

[1] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The
finite element method for engineers, 2001.

[2] T. Davis, Direct Methods for Sparse Linear Systems, ser. Fundamentals
of Algorithms. Society for Industrial and Applied Mathematics, 2006.

[3] H. M. Markowitz, “The elimination form of the inverse and its applica-
tion to linear programming,” Manage. Sci., vol. 3, no. 3, pp. 255–269,
Apr. 1957.

[4] T. A. Davis and E. P. Natarajan, Sparse Matrix Methods for Circuit
Simulation Problems. Springer Berlin Heidelberg, 2012.

[5] R. Zayer, M. Steinberger, and H.-P. Seidel, “A GPU-adapted structure
for unstructured grids,” Computer Graphics Forum, vol. 36, no. 2, pp.
495–507, 2017.

[6] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke et al., “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2016, pp. 1–9.

[7] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Advances in neural information processing systems,
2014, pp. 2177–2185.

[8] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity, 2002.

[9] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, ser. SC ’09, New York, NY, USA, 2009, pp. 18:1–18:11.

[10] M. Parger, M. Winter, D. Mlakar, and M. Steinberger, “Speck: Ac-
celerating gpu sparse matrix-matrix multiplication through lightweight
analysis,” in Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’20, New
York, NY, USA, 2020, p. 362–375.

[11] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th National Conference, ser.
ACM ’69, New York, NY, USA, 1969, pp. 157–172.

[12] J. A. George, “Computer implementation of the finite element method,”
Ph.D. dissertation, Stanford, CA, USA, 1971.

[13] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J. Garzarán, and K. Pingali,
“Parallelization of reordering algorithms for bandwidth and wavefront
reduction,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’14,
Piscataway, NJ, USA, 2014, pp. 921–932.

[14] A. Azad, M. Jacquelin, A. Buluç, and E. G. Ng, “The reverse cuthill-
mckee algorithm in distributed-memory,” in 2017 IEEE IPDPS, 2017,
pp. 22–31.

[15] T. N. Rodrigues, M. C. S. Boeres, and L. Catabriga, “A non-speculative
parallelization of reverse cuthill-mckee algorithm for sparse matrices
reordering,” in 2017 Federated Conference on Computer Science and
Information Systems (FedCSIS), Sep. 2017, pp. 527–536.

[16] D. Mlakar, M. Winter, P. Stadlbauer, H.-P. Seidel, M. Steinberger, and
R. Zayer, “Subdivision-specialized linear algebra kernels for static and
dynamic mesh connectivity on the GPU,” Computer Graphics Forum,
vol. 39, no. 2, pp. 335–349, 2020.

[17] C. H. Papadimitriou, “The np-completeness of the bandwidth minimiza-
tion problem,” Computing, vol. 16, no. 3, pp. 263–270, 1976.

[18] A. George, M. T. Heath, J. Liu, and E. Ng, “Solution of sparse positive
definite systems on a shared-memory multiprocessor,” International
journal of parallel programming, vol. 15, no. 4, pp. 309–325, 1986.

[19] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph
partitioning and sparse matrix ordering,” Journal of Parallel and Dis-
tributed Computing, vol. 48, no. 1, pp. 71–95, 1998.

[20] R. J. Lipton, D. J. Rose, and R. E. Tarjan, “Generalized nested
dissection,” SIAM journal on numerical analysis, vol. 16, no. 2, pp.
346–358, 1979.

[21] S. Sloan, “An algorithm for profile and wavefront reduction of sparse
matrices,” International Journal for Numerical Methods in Engineering,
vol. 23, no. 2, pp. 239–251, 1986.

[22] N. E. Gibbs, W. G. Poole, Jr, and P. K. Stockmeyer, “An algorithm for
reducing the bandwidth and profile of a sparse matrix,” SIAM Journal
on Numerical Analysis, vol. 13, no. 2, pp. 236–250, 1976.

[23] J. G. Lewis, “Implementation of the gibbs-poole-stockmeyer and gibbs-
king algorithms,” ACM Transactions on Mathematical Software (TOMS),
vol. 8, no. 2, pp. 180–189, 1982.

[24] W.-H. Liu and A. H. Sherman, “Comparative analysis of the cuthill–
mckee and the reverse cuthill–mckee ordering algorithms for sparse
matrices,” SIAM Journal on Numerical Analysis, vol. 13, no. 2, pp.
198–213, 1976.

[25] S. T. Barnard, A. Pothen, and H. Simon, “A spectral algorithm for
envelope reduction of sparse matrices,” Numerical linear algebra with
applications, vol. 2, no. 4, pp. 317–334, 1995.

[26] W. W. Hager, “Minimizing the profile of a symmetric matrix,” SIAM
Journal on Scientific Computing, vol. 23, no. 5, pp. 1799–1816, 2002.

[27] Y. Hu and J. A. Scott, “A multilevel algorithm for wavefront reduction,”
SIAM Journal on Scientific Computing, vol. 23, no. 4, pp. 1352–1375,
2001.

[28] G. Kumfert and A. Pothen, “Two improved algorithms for envelope and
wavefront reduction,” BIT Numerical Mathematics, vol. 37, no. 3, pp.
559–590, 1997.

[29] M. Manguoglu, M. Koyutürk, A. H. Sameh, and A. Grama, “Weighted
matrix ordering and parallel banded preconditioners for iterative linear
system solvers,” SIAM Journal on Scientific Computing, vol. 32, no. 3,
pp. 1201–1216, 2010.

[30] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab:
Design and implementation,” SIAM Journal on Matrix Analysis and
Applications, vol. 13, no. 1, pp. 333–356, 1992.

[31] HSL, “A collection of fortran codes for large scale scientific computa-
tion. http://www.hsl.rl.ac.uk,” 2013.

[32] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient parallel
graph ordering,” Parallel computing, vol. 34, no. 6-8, pp. 318–331, 2008.

[33] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in 2016 IEEE IPDPS, May 2016, pp. 22–31.

[34] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.

[35] NVIDIA, “cuSolver :: CUDA Toolkit Documentation,” https://docs.
nvidia.com/cuda/cusolver/index.html, 2020.


