
Softshell: Dynamic Scheduling on GPUs

Markus Steinberger∗ Bernhard Kainz∗ Bernhard Kerbl Stefan Hauswiesner∗ Michael Kenzel Dieter Schmalstieg∗

Graz University of Technology, Austria

Abstract

In this paper we present Softshell, a novel execution model for de-
vices composed of multiple processing cores operating in a single
instruction, multiple data fashion, such as graphics processing units
(GPUs). The Softshell model is intuitive and more flexible than the
kernel-based adaption of the stream processing model, which is cur-
rently the dominant model for general purpose GPU computation.
Using the Softshell model, algorithms with a relatively low local
degree of parallelism can execute efficiently on massively parallel
architectures. Softshell has the following distinct advantages: (1)
work can be dynamically issued directly on the device, eliminating
the need for synchronization with an external source, i.e., the CPU;
(2) its three-tier dynamic scheduler supports arbitrary scheduling
strategies, including dynamic priorities and real-time scheduling;
and (3) the user can influence, pause, and cancel work already sub-
mitted for parallel execution. The Softshell processing model thus
brings capabilities to GPU architectures that were previously only
known from operating-system designs and reserved for CPU pro-
gramming. As a proof of our claims, we present a publicly avail-
able implementation of the Softshell processing model realized on
top of CUDA. The benchmarks of this implementation demonstrate
that our processing model is easy to use and also performs substan-
tially better than the state-of-the-art kernel-based processing model
for problems that have been difficult to parallelize in the past.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages; I.3.1 [Computer Graphics]: Hardware
Architecture—Parallel processing;

Keywords: priority scheduling, GPU, priority work queue, real-
time scheduling, persistent threads, dynamic parallelism

Links: DL PDF WEB CODE

1 Introduction

Over the last decade, parallel computing has become increasingly
available to a wide audience, largely due to graphics processing
units (GPUs), which have evolved into massively-parallel general-
purpose co-processors. GPU hardware is evolving rapidly, elimi-
nating the drawbacks of previous designs with the introduction of
a multi-level cache or stack [NVIDIA 2009]. On the software side,
new programming languages such as CUDA have advanced, but
the processing model itself has mostly remained untouched since
the beginning of general-purpose GPU programming. This model
inherently has several limitations:

∗e-mail: {steinberger, kainz, hauswiesner, schmalstieg}@icg.tugraz.at

Workpackage
Priority Queue

Dynamic
Workpackage
Creation

Dynamic
Workitem

Creation

Work
Aggregation

Event
Occurrence

Parallel
Procedure
Execution

Figure 1: The Softshell processing model: Due to an event, new
work becomes available for execution on a GPU. Work items are
grouped in workpackages, waiting for their parallel execution in a
priority queue. When a SIMD processing unit becomes available,
it draws the highest priority workpackage from the queue and runs
the procedure associated with it. During execution, new work can
dynamically be created on the GPU, either in form of entire work-
packages or as single work items to be automatically aggregated.
In this way, algorithms with various degrees of parallelism can ef-
ficiently be mapped to SIMD architectures.

The first limitation is that sufficient data parallelism is required in
every stage of an algorithm. These stages are captured by kernel
function calls. A fixed number of threads are launched for a sin-
gle kernel and start executing the same code. There is no way to
dynamically adjust the parallelism during a single kernel launch.
While from a hardware perspective it would be sufficient if a high
number of coherently executing thread groups are available, good
performance using kernel functions can only be achieved, if ker-
nels are started for thousands of threads [NVIDIA 2011; Khronos
2008]. This rigid requirement often impairs the straight forward
mapping of common algorithms for GPU execution. Such a prob-
lem is, for example, traversing a tree and executing an operation for
every node. One way of parallelizing these classes of algorithms is
to subsequently launch a kernel for each tree level. For non-trivial
applications, the local tree depth may strongly vary, resulting in un-
derutilization if there are not enough tree nodes available. Addition-
ally, determining the number of nodes per level and mapping them
to threads requires synchronization after each level and inefficient
parallel reduction methods. The easier and more efficient solution
would be to launch new threads for every child node dynamically.
Many other problems in graphics show a similar dependency be-
tween control flow and parallelism.

The second limitation is due to the fact that kernel launches are
entirely controlled by the CPU. Therefore, GPU/CPU synchroniza-
tion between kernel launches is necessary, if decisions concerning
the next kernel launch must be made. The overhead of passing con-
trol back and forth between the GPU and CPU can be omitted if the
execution of new tasks could be initiated on the GPU itself. Ad-
ditionally, there is currently no way to interrupt or terminate the
execution of a running kernel. Interrupting events can only be con-
sidered after a kernel has finished. However, if a user changes input
parameters – for example in an interactive visualization – the cur-
rent kernel launch may become obsolete and any further computa-
tions become useless.

http://doi.acm.org/10.1145/2366145.2366172
http://portal.acm.org/ft_gateway.cfm?id=2366172&type=pdf
http://www.icg.tugraz.at/project/mvp
http://www.icg.tugraz.at/project/mvp/downloads
mailto:steinberger@icg.tugraz.at?subject=Softshell: Dynamic Scheduling on GPUs
mailto:kainz@icg.tugraz.at?subject=Softshell: Dynamic Scheduling on GPUs
mailto:hauswiesner@icg.tugraz.at?subject=Softshell: Dynamic Scheduling on GPUs
mailto:schmalstieg@icg.tugraz.at?subject=Softshell: Dynamic Scheduling on GPUs

The third limitation is, to the best of our knowledge, that cur-
rently no system provides GPUs with a functionality similar to
work scheduling, which is common practice on CPUs and highly
exploited by modern operating systems. Scheduling on the GPU is
currently based on a simple first-in first-out (FIFO) handling. Thus,
work-intensive background tasks can block the entire GPU and de-
lay the execution of high-priority foreground tasks. The absence
of a priority-based scheduler makes it impossible to use GPUs for
tasks with diverse execution characteristics.

The fourth limitation is the lack of time-awareness during GPU
execution. The notion of time is very important for many problems,
especially for real-time graphics that must fulfill at least soft real-
time constraints.

To tackle these shortcomings, we propose Softshell as outlined in
Figure 1. Softshell is a flexible processing model for GPUs that
allows a wide range of algorithms to be executed efficiently and
autonomously on the GPU. Our main contributions can be summa-
rized as follows:
• We propose the flexible Softshell processing model based on

the concepts of events, procedures and workpackages, exploit-
ing current GPUs better than previous approaches.

• We design this model in a way that facilitates arbitrary amounts
of work at any point in time and distributes the work across
available processing cores without the need to involve the CPU.

• We describe a novel, three-tier dynamic scheduler, which sup-
ports dynamic per workpackage priorities that can change at any
point in time.

• We introduce a messaging interface that allows bidirectional
communication between the CPU and every processing core on
the GPU, even during GPU execution.

• We enable real-time scheduling by introducing a coherent
system-wide time source.

• We provide an implementation of the Softshell model and
demonstrate its advantages. It is freely available for download
and does not depend on any additional third-party libraries.

2 Related work

Scheduling for massively parallel, SIMD architectures is a young
discipline. GPUs have only been available as streaming co-
processors for a few years [McCool et al. 2002; Buck et al. 2004].
Thus, few approaches target scheduling strategies for GPUs, and
those that exist are rather limited. However, scheduling is an impor-
tant and mature problem in operating system design [Tanenbaum
2007]. Unfortunately, GPU architectures differ from CPU architec-
tures in several fundamental properties, making a simple adaption
of traditional strategies infeasible.

Built-in GPU scheduling is performed on different levels for ar-
chitectures as shipped today [NVIDIA 2009]. Kernels are split up
into blocks of threads, which are executed on different multipro-
cessors. On each multiprocessor, a thread block scheduler switches
between the most suitable threads to be executed [NVIDIA 2011].
This scheduling level could be improved by the use of hardware-
based dynamic warp formation and scheduling as proposed by Fung
et al. [Fung et al. 2007].

Recently, standard consortia like the Khronos group and hardware
vendors strive towards dynamic parallelism on the GPU, which will
be supported by NVIDIA’s Kepler architecture [NVIDIA 2012]. In
the near future, it will be possible to launch kernels directly from
the GPU. The main differences to Softshell are the granularity of
these operations and the fact that Softshell is independent of the
hardware model. According to NVIDIA, kernel launches from the
GPU will behave just the same as kernel launches from the CPU

and show the same temporal overheads. Thus, it will also be nec-
essary to launch parallel reduction methods to determine thread to
data mappings and launch kernels of sufficient size. In contrast,
Softshell provides very fine grained task control, allowing to start
individual threads or groups of threads with only a comparatively
small overhead. Another recently announced feature of future ar-
chitectures are parallel command queues, which will allow the con-
current execution of multiple tasks. We expect Softshell to benefit
from this feature, as it will allow Softshell to occupy only a part of
the GPU, while the remaining cores can execute other tasks, such
as OpenGL.

Work queues and mega-kernels allow scheduling on a higher
level in software. Work queues allow to dynamically balance
workloads between execution units [Cederman and Tsigas 2008].
This technique is most often paired with persistent thread ap-
proaches, which have recently been studied and summarized by
Gupta et al. [Gupta et al. 2012]. A common application of persistent
threads mega-kernels, which maintain control on the GPU while
switching arbitrarily between tasks [Aila and Laine 2009]. Refine-
ments to these techniques consider thread groups instead of single
threads and allow for work to be added from the host [Chen et al.
2010; Tzeng et al. 2010; Chatterjee et al. 2011]. For previous hard-
ware generations it has been found that a single shared queue per-
forms worse than distributed queues [Chatterjee et al. 2011; Tzeng
et al. 2010]. This finding may not hold for current GPUs that pro-
vide a globally shared cache [NVIDIA 2009]. In contrast to these
approaches, we use a fixed size ring buffer as monolithic queue to
enable sorting of this queue for dynamic priority scheduling. Fur-
thermore, we avoid centralized locks and rather use a state variable
per element to greatly increase access speed to the queue.

Multi-GPU and heterogeneous systems achieve scheduling on
a higher level, as shown in RenderAnts [Zhou et al. 2009]. Render-
Ants uses BSGP [Hou et al. 2008], which uses the CPU as a syn-
chronization point between dependent execution steps. Although
BSGP improves the process of mapping algorithms to the GPU, it
essentially only changes the programming interface for the kernel-
based processing model. In a similar manner, Sponge [Hormati
et al. 2011] analyzes and optimizes the static graph of StreamIt
programs to generate efficient GPU code for various hardware ar-
chitectures. Besides RenderAnts, many approaches exist that dis-
tribute work over multiple GPUs, e.g., [Chen et al. 2010; Rossbach
et al. 2011]. It is also possible to combine CPU and GPU exe-
cution [Frey and Ertl 2010; Agullo et al. 2010]. Another related
approach is GRAMPS [Sugerman et al. 2009]. In this abstract ren-
dering architecture, an algorithm is modeled as a directed graph of
worker nodes connected by queues. The GRAMPS architecture is
very general, but to date, it has only been tested on a CPU archi-
tecture [Sanchez et al. 2011]. While the basis of our processing
model is similar to GRAMPS, our scheduler enables arbitrary dy-
namic priorities on a fine grained level. In this way, the scheduling
strategy can be adapted to the target application.

Multi-Level Scheduling is used in NVIDIA OptiX [Parker et al.
2010], a framework for applications based on raytracing. OptiX
is probably the most evolved approach in this direction. A fixed
priority scheduler is used to lower the number of diverging branches
on each multiprocessor. Load balancing between multiple GPUs is
dealt with appropriately filling work queues on each GPU. Each
execution unit draws elements from this global work queue to fill
a local queue. While the OptiX approach is very powerful, it is
restricted to applications in which the main workload comes from
raytracing. Because it is closed-source, it is difficult to perform a
detailed analysis or to build on top of their core results.

Real-time scheduling is necessary for applications that demand
certain tasks to be completed by a given deadline. Although time
plays an important role in interactive graphics applications, to-
day’s GPU programming is focused on throughput rather than time-
awareness. If real-time constraints are considered, they are only
tracked from the CPU, by choosing which command to send to the
GPU next [Kato et al. 2011]. These approaches can work well for
light-weight tasks but long running tasks can block the GPU and
thus impair the application’s real-time behavior. For an extensive
overview of real-time scheduling, see the work by Sha et al. [Sha
et al. 2004].

3 Processing model

The Softshell processing model targets architectures comprised of
multiple SIMD units, such as those found on current NVIDIA
and ATI GPUs [NVIDIA 2009; Adv 2011] or on Intel’s proposed
Larrabee architecture [Seiler et al. 2008]. The conventional stream
processing model for GPU programming is based on the assump-
tion that input data is laid out entirely in memory prior to the call
of a kernel. In this way, the entire stream may be executed in
parallel. In contrast, the Softshell processing model builds on a
more complete adaptation of the original stream processing model.
We assume that applications are dynamic and show unpredictable
data-dependent execution paths. In this way, any portion of input
data can become available at any point in time. Thus, the paral-
lelism is not required to only be spatial; it may also be temporal:
Multiple tasks can run in parallel, and data can be added to ar-
bitrary input streams at any time. In contrast to GRAMPS [Sug-
erman et al. 2009], Softshell also considers cases in which multi-
ple algorithms with different time characteristics run concurrently.
Therefore, we allow for arbitrarily changing priorities to enable
well tuned scheduling strategies. To describe the Softshell process-
ing model as outlined in Figure 1, we introduce the notion of work
items, workpackages, procedures and events:

• Work items describe data to be processed by a single thread,
• Workpackages define a collection of work items,
• Procedures describe the functions executed for a work item,
• Events are triggered by the user and initiate the execution by

generating work items and workpackages.

3.1 Softshell entities

Procedures define the execution steps in Softshell. In contrast
to massive kernels, which are intended to occupy the entire GPU
with thousands of threads, procedures are designed to be executed
by small groups of coherent threads. Thus, a procedure is well
suited for the execution on one SIMD unit. To fully occupy de-
vices with several SIMD units, Softshell schedules multiple (differ-
ent) procedures in parallel. Procedures are function like constructs
that require input parameters. These input parameters are formed
by workpackages. Depending on the input workpackage, the ac-
tive number of threads for a procedure’s execution may have to be
adjusted by Softshell. To allow for more algorithmic control, the
application programmer can demand a fixed number threads to be
started for each procedure execution. Softshell expects procedures
to run for a short period of time, compared to the execution time of
an entire algorithm. Thus, the execution of a procedure will nor-
mally not be interrupted until it has been processed and scheduling
decisions can be made before starting the next procedure.

Work items and Workpackages describe the input data for pro-
cedures. While procedures form the description of the execution
steps, the combination with work items and workpackages allow
Softshell to track what is to be executed.

Work items correspond to work that is to be executed by a sin-
gle thread. These work items can be combined to workpackages,
which are intended to be executed in parallel by groups of coherent
threads within a procedure. Using these definitions, Softshell man-
ages work on different granularities. Workpackages can contain an
arbitrary number of work items, which can be merged by Softshell
to create workpackages of optimal size. It is possible to hide the
number of work items within a workpackage from Softshell. This
can be necessary if workpackages need to be executed with a fixed
number of threads and must not be merged with other workpack-
ages – for example optimized parallel reduction code, which works
only with a defined number of work items. In this case the applica-
tion programmer defines a static number of necessary threads with
the definition of the procedure.

From a programming model point of view, an algorithm can be con-
structed like a graph with Softshell. Procedures form the nodes of
the graph. Work items and workpackages are added to queues that
feed the procedure nodes. Queues belonging to procedures, which
require a static number of executing threads, contain fixed sized
workpackages. The queues of all other procedures hold workpack-
ages of arbitrary size. These workpackages might be merged while
they are waiting for their execution.

Capturing work on different granularities allows Softshell to auto-
matically adjust a trade-off between efficiency and flexibility. Dur-
ing the execution of a procedure, entire workpackages or single
work items can be generated and queued for arbitrary procedures.
If a whole workpackage is generated, Softshell only needs to track
a single object to provide work for a whole group of threads. If a
procedure only produces a few work items, Softshell may combine
them to one workpackage providing a sufficient number of work
items for an entire group of threads.

Events initiate the execution of an algorithm in Softshell. This
initialization can be explicitly triggered by a user supplying spe-
cific input, new data becoming available, or a timer. For these cases
the application programmer can create an event. When the event is
triggered, it queues initial workpackages for a predefined set of pro-
cedures. Work created during the execution of these workpackages
is again associated with the original event. The event is considered
to be processed when all associated workpackages have been pro-
cessed. In this way, the application can track the progress or cancel
the algorithm that is associated with an event.

Former GPU execution models focused on the execution of a sin-
gle algorithm or tried to achieve the highest throughput for a single
pipeline. But real world systems consist of multiple algorithms with
severely different execution characteristics. In Softshell, events
capture these individual algorithms, which may all fight for the
available resources. In comparison to workpackages and proce-
dures, which describe the bits and pieces of an algorithm, an event
strings these pieces together and makes the execution of an algo-
rithm traceable.

3.2 Example

To demonstrate the usage of the basic entities of Softshell, we will
describe how an octree-based mesh simplification algorithm can be
efficiently mapped to the Softshell processing model. Furthermore,
we show some code pieces to ease the understanding of the pro-
cessing model and to demonstrate that code for Softshell can be
written in an intuitive manner (Listing 1). One classical mesh sim-
plification approach, which is difficult to optimally map to the GPU,
is hierarchical dynamic simplification (HDS) [Luebke and Erikson
1997].

Traverse
Procedure

Generate
Vertices

Procedure

Traverse
Event

Figure 2: Octree-based mesh simplification [Luebke and Erikson
1997] on the GPU: An event (orange) generates an initial work
item. The traverse procedure is executed for every octree node,
issuing new work items for the traverse and generate vertices pro-
cedure, which are automatically combined by Softshell.

In a preprocessing step, an octree is built and then traversed dur-
ing rendering. Each node of this octree can either be expanded or
collapsed. Expanded nodes increase the local detail by adding tri-
angles to the mesh, while collapsed nodes define vertex positions.
The workload for each node may vary strongly, depending on the
local complexity of the mesh. This heterogeneous workload can
efficiently be handled by the Softshell work aggregation approach,
as shown in Figure 2. In our implementation, a traverse event cre-
ates a single work item for the root node executed by the traverse
procedure. This procedure creates work items for every child node,
which are aggregated to workpackages and again assigned to the
traverse procedure. Each time the traversal reaches a boundary
node, a work item is issued for the generate vertex procedure. Tri-
angles are generated directly in the traverse procedure.

Using the traditional kernel-based model, a large number of in-
termediate computations are necessary to assign octree nodes to
threads. One would normally traverse the octree in a breadth-first
fashion, applying a parallel prefix sum to determine the number of
active nodes. After that, CPU and GPU must synchronize, so that
the correct number of threads is launched for the next level. This
strategy is used in current state-of-the art parallel octree traversal
solutions [Zhou et al. 2011]. Because this approach only paral-
lelizes the execution of nodes on the same level, the GPU utiliza-
tion may drop significantly for imbalanced octrees. Using Softshell,
nodes from all levels can execute concurrently, dynamically bal-
ancing between breadth-first and depth-first traversal. Section 6.2.1
provides a quantitative comparison of the example outlined here to
a traditional kernel-based implementation and shows that the Soft-
shell approach is easier to write and executes more efficiently.

4 Three-tier scheduling model

Softshell employs a three-tier scheduling model, which is responsi-
ble for distributing work submitted to the system to execution units.
The first tier is responsible for work distribution between multiple
GPUs. The second tier is concerned with workpackage priorities
and with assigning workpackages to free execution units. The third
tier is active during the execution of a single workpackage, address-
ing diverging threads, pausing, canceling and restarting the active
workpackage. The Softshell model only defines the duties of the
different scheduling tiers, not their implementation. Nevertheless,
we propose a reference implementation in Section 5.

First-tier scheduling is activated whenever a new event occurs.
To influence the execution of concurrently active events, events can
be assigned priorities. Depending on the state of all GPUs, the
first-tier scheduler sends an event to the most suitable GPU. For
this purpose, it considers the event’s priority, the event’s execution
history, and the current load on each GPU. The first-tier scheduler
tries to initiate the event execution in such a way that (1) high-
priority events are completed first, (2) all GPUs are well utilized,
and (3) the execution of all events is completed as soon as possible.

Listing 1: The C++ Softshell implementation on top of CUDA is
easy to use. For mesh simplification [Luebke and Erikson 1997],
only two procedures are required, as shown in Figure 2. Each
Procedure is created by implementing the execute method.
Work items for this example correspond to a node identifier only
(line 1). Workpackages consisting of multiple work items are de-
fined using templates (line 2). New work items are handed to Soft-
shell using the issueWorkItem command (line 19 and 22) and
telling the system for which procedure the work item should be
queued (template parameter). The TraverseEvent issues a sin-
gle workpackage for the TraverseProcedure.

1 t y p e d e f u i n t NodeWorkItem ;
2 t y p e d e f CombWorkpackage<NodeWorkItem> NodeWp ;
3
4 c l a s s T r a v e r s e P r o c e d u r e : p u b l i c P r o c e d u r e
5 {
6 p u b l i c :
7 d e v i c e s t a t i c vo id
8 e x e c u t e (Workpackage∗ workpackage)
9 {
10 / / e x t r a c t t h e work i t em from t h e package
11 NodeWp∗ myWp = (NodeWp∗) (workpackage) ;
12 NodeWorkItem myItem = myWp−>getMyWorkItem () ;
13
14 Node∗ node = ge tOc t r eeNode (myItem) ;
15 f o r (u i n t i =0 ; i < node−>numChi ldren () ; ++ i)
16 {
17 / / check i f t h i s node s h o u l d be expanded
18 i f (c a r r y O n T r a v e r s a l (node−>c h i l d (i)))
19 i s sueWorkI tem<T r a v e r s e P r o c e d u r e >(
20 NodeWorkItem (node−>c h i l d (i))) ;
21 e l s e
22 i s sueWorkI tem<G e n V e r t i c e s P r o c e d u r e >(
23 NodeWorkItem (node−>c h i l d (i))) ;
24 }
25 w r i t e T r i a n g l e O u t p u t (node) ;
26 }
27 } ;
28
29 c l a s s TEvent
30 {
31 d e v i c e s t a t i c vo id o c c u r e d ()
32 {
33 NodeWorkItem r o o t = 0 ;
34 i s sueWorkpackage<T r a v e r s e P r o c e d u r e>
35 (NodeWp(& r o o t , 1)) ;
36 }
37 } ;

Second-tier scheduling is the core of Softshell. In contrast to
previous approaches that filled up free processing units with the
next best entity, Softshell introduces a more sophisticated logic on
this layer: Events and workpackage are considered to have indi-
vidual priorities. Softshell tries to schedule the most important
workpackages first, while allowing priorities to change at any point
in time. Additionally, every application can define its own per
workpackage priority function. This priority function is queried by
the second-tier scheduler regularly to schedule the highest priority
workpackages first. Obviously, the execution order is independent
from the order in which workpackages are issued.

Third-tier scheduling is responsible for longer running proce-
dures. It is active during the execution of a single workpackage and
regularly queries the current execution state. The second tier can
demand the current execution to stop, if higher priority workpack-
ages became available or the associated event got canceled. If the

Controller Threads

First Tier
Scheduler

Controller Block

Second Tier
Scheduler

Third Tier
Scheduler

Host
Messaging

Event List

Time Sync

Sorted
Queue

Thread
Aggregation

Event Lists

Task List

Time Sync

Device
Messaging

Kernel
Launcher
Memory

Controller

GPU CPU

Figure 3: Our implementation of the Softshell processing model is
split between CPU and GPU. The CPU part implements the first-
tier scheduler and keeps the GPUs active. The second- and third-
tier schedulers are realized directly on the GPUs partially relying
on recurring execution within the controller block.

workpackage’s execution should continue at a later time, the third
tier saves all thread contexts and issues the workpackage together
with the saved state for later execution. For complex procedures
it can be beneficial to regroup diverging threads according to their
execution paths. The third-tier scheduler can achieve this by either
locally regrouping threads, or by combining threads on a global
level. To achieve global regrouping, the third tier stops the execut-
ing workpackage and inserts the threads into a global thread aggre-
gation structure, which works similar to work item combination. If
threads within this structure cannot be regrouped for a certain time,
they are re-issued regardless of their coherency.

5 Implementation

To demonstrate the utility of Softshell, we describe an implementa-
tion built as a mega-kernel [Aila and Laine 2009] on top of NVIDIA
CUDA. To implement Softshell, we build all its functionality in
software, replacing CUDA’s kernel-based interface by a C++ in-
terface. Note that the described implementation can be made more
efficient in the future if implemented as a driver or partially in hard-
ware. In the following section, we focus on the selected key as-
pects of our implementation. To provide the interested reader with
all implementation details, we offer our implementation as open
source, to be downloaded at http://www.icg.tugraz.at/
project/mvp.

Our implementation consists of multiple components interacting
with each other, as depicted in Figure 3. The CPU part of the Soft-
shell implementation forwards input from the application to GPUs
and keeps the internal states synchronized between multiple GPU
devices. Due to the way we synchronize with the kernel launches,
one CPU thread per GPU is responsible for launching kernels to
keep the GPUs occupied.

The GPU segment of the implementation is concerned with col-
lecting information about the execution and managing work items
and workpackages. On the GPU we distinguish between worker
blocks and one controller block. The worker blocks are CUDA
thread blocks, which execute the procedures for all workpackages.
The controller block is a CUDA thread block whose only respon-
sibility is to carry out recurring maintenance procedures, including
the communication with the CPU and different kinds of schedul-
ing procedures. This setup allows us to react on new events and
changing priorities, while the GPU is under full load.

Our implementation of the first-tier scheduler is straight forward.
Whenever an event occurs, the first-tier scheduler determines the
GPU with the lowest load and forwards the event to this GPU. To
support this decision-making, each GPU regularly informs the CPU
about the estimated time texp until all events assigned to it will be
processed.

To track active and previous events, we use an event list. This list
supports querying the event status and reaction on the event’s com-
pletion. Each event launch can be supplied with a set of parame-
ters, which are made available on the GPU executing the event. As
events can occur during the execution of the mega-kernel, the pa-
rameter transfer must happen in parallel with kernel execution. To
achieve this, we use page-locked host memory, which is mapped
into the address space of the GPU. Whenever a new set of parame-
ters needs to be passed to the GPU, the memory controller searches
for a free region of sufficient size within the mapped memory. The
first fit is then used for the parameter transfer and marked as used
until the event execution has finished.

One of the most important features of our implementation is the
messaging component that enables a bi-directional communica-
tion between the CPU and GPU while the mega-kernel is active.
It is needed to start the execution of events, alter event priorities,
report information about event execution, and synchronize the time
between the GPU and CPU. Again, we use mapped page-locked
host memory to establish this communication. We provide two
message queues implemented as ring buffers, one for each direc-
tion. On the CPU side, we use a mutex to lock the queue when
multiple threads want to send messages to the GPU. On the GPU,
any running thread can send messages to the CPU, which requires
atomic operations to avoid corruption.

As there is no mechanism to automatically react to changes in
mapped memory, we poll the queue fill levels to determine changes.
For each GPU, there is one CPU thread responsible for polling the
message queue, while on the GPU, the controller block checks the
queue state. Atomic operations are not supported between GPU and
CPU. Therefore, the receiver does not alter the queue state directly
when reading messages from a queue. Instead, it returns a message
requesting the sender to update the queue state.

Our implementation of the second-tier scheduler assigns work-
packages to worker blocks. Before the second tier becomes active,
the initial workpackages for an event must be created. This action
is performed by the controller block, when it receives a message
about a new event occurrence. Because workpackages are created
using dynamic memory allocation, we use our own memory alloca-
tor, ScatterAlloc [Steinberger et al. 2012], to speed up workpack-
age creation. To handle the assignment of ready workpackages to
worker blocks, we establish one monolithic queue. Every entry in
this queue holds a reference to the corresponding workpackage and
procedure. Worker blocks pull workpackages from the front of the
queue, while new workpackages are inserted at the back. The sec-
ond tier only becomes active after the execution of a procedure has
finished, thus we have to rely on procedures not to occupy worker
blocks for too long, to be able to react on newly available high pri-
ority workpackages.

On GPUs, the high overhead of synchronization primitives pro-
hibits the use of complex data structures like sorted linked lists or
heaps. Therefore, we employ a simple ring-buffer-based queue but
use the controller block to periodically sort the queue according
to the workpackage priorities. To enable concurrent insertion and
deletion and to avoid a single mutex for locking the entire queue,
we use an atomically operated counter for the front and back of
the queue. Every entry has a state flag indicating if it is ready for
processing. This flag avoids pulling workpackages from the queue,

http://www.icg.tugraz.at/project/mvp
http://www.icg.tugraz.at/project/mvp

workpackage priorities

sorting

sorting

start

sorting

sorting

restart

sorting calls

Figure 4: We support insertion and removal of workpackages while
the queue is iteratively sorted. Each iteration, two segments (blue
frames) are locked and sorted. For the next iteration, the window
is moved one segment to the front, taking high-priority workpack-
ages along. If there is not enough time for sorting the front-most
segment, the algorithm is restarted at the back.

which are currently being inserted by another thread. To further
speed up the insertion process, the queue counters are altered by a
single thread only, if multiple threads of a block enqueue data.

Because the queue-sorting algorithm runs periodically, the main ob-
jective of the algorithm is to move high-priority workpackages to
the front of the queue. The order of workpackages at the back is
not relevant as long as these workpackages are not removed from
the queue before the sorting algorithm is restarted. Consider the
example in Figure 4: To avoid occupying the execution of the con-
troller block for too long, we partition the queue into fixed size
segments. Each invocation of the sorting algorithm takes two ad-
jacent segments and sorts their elements, advancing one segment
to the front each time; the number of high priority workpackages
moved to the front thus equals the segment size. Worker blocks
pop elements from the queue while the sorting is run. To avoid data
corruption, we mark segments being sorted to prevent their removal
(blue frames in Figure 4). Furthermore, we use meta-data collected
for every procedure to estimate the time until a segment becomes
the front of the queue. If the estimated time frame is too short to
execute the sorting algorithm, we refrain from sorting this segment,
as stalling the system would be much worse than executing a few
lower-priority workpackages. Instead, we restart the sorting process
at the back, again moving workpackages of higher priority to the
front. To sort the segments in parallel, we use bitonic sort [Batcher
1968], which is well-suited for a small number of elements.

To store meta information of all procedures and call their execute
method, we keep a procedure list. This meta data includes mini-
mal, maximal, and average execution time and the average num-
ber of workpackages issued by the procedure. This setup enables
the estimation of procedure and event execution times. Similarly,
we store information about the currently active and previously exe-
cuted events. Additionally to the average execution time and aver-
age number of executed workpackage per event, we also keep track
of the number of currently queued workpackages for this event. If
this active workpackage counter drops to zero, the event has been
fully processed and the CPU can be informed.

Because of the lack of GPU hardware support for preemptive mul-
titasking, our current implementation of the third-tier scheduler
uses a cooperative approach. The application programmer speci-
fies scheduling points, at which the third-tier scheduler is invoked
and determines whether execution should continue and whether the
thread execution paths are still coherent. Using code analysis for
inserting scheduling points would also be possible. However, for

First Tier

Thread Aggregation

Third Tier Third Tier Third Tier Second Tier Third Tier new
event

find target

distribute info

collect data
 cancel

event

collect data

store eventinfo

create wps

sort queue

event
infos

texp

exec wp

check state

regroup threads

max
priority
re-issue

wp

exchange
issue
wp

Figure 5: Three-tier scheduler: the first tier is activated when an
event occurs and forwards it for execution to the most appropriate
device. The second tier creates the initial workpackages (wp) for
the event and inserts them into the priority queue. The highest-
priority workpackages are forwarded to the third tier for execution
by a worker block. The third tier periodically checks the current
execution state of all active threads. If the workpackage’s priority
is too low compared to the front of the queue, it stops execution and
re-issues the workpackage. If the threads’ execution paths strongly
diverge, the third tier regroups the threads.

our experiments we decided to let the developer define schedul-
ing points manually and to leave the full control on the user-side.
To determine the variables that need to be stored, we use a simi-
lar approach to Optix [Parker et al. 2010] and let the application
programmer define the threads payload. In addition to all thread
payloads, we also store an identifier for the current execution loca-
tion. If a block receives a workpackage that has previously been
executed, it can restore the execution state and continue the execu-
tion at the point where it has been suspended. This is similar to
kernel relaunching as described by Hou et al. [Hou et al. 2009].

To monitor the thread execution paths, every thread publishes the
execution path it will take. If a vote reveals that the thread diver-
gence is above a threshold, the scheduler either stops the work-
package and submits all threads to the global thread aggregation, or
exchanges a few threads with threads already in the thread aggrega-
tion. The thread aggregation itself keeps a list of stored threads for
all execution points of all procedures. The controller block period-
ically scans through this list. If there are enough threads stored to
form an entirely coherent workpackage or if the threads have been
in the list for too long, the controller block merges the threads to
a workpackage and issues it for execution. In the same way, the
thread aggregation also concatenates work items to workpackages,
as defined in Section 3.1.

Note that Softshell supports thread synchronization and local
shared memory within procedures. The only limitation is that
shared memory must not be declared as extern. Thread synchro-
nization is implemented using inline ptx code, which gives us ac-
cess to 16 barriers that we use for the different subgroups of threads
executing individual procedures.

In a system with real-time properties, synchronized time is an im-
portant feature. On CUDA devices, a counter, which keeps pace
with the device clock rate is available on each multiprocessor. To
synchronize these counters during system initialization, we launch
a kernel to write each counter’s state to an array in global shared
memory. With the messaging component we periodically synchro-
nize this array and the time on the CPU using Poincaré-Einstein
synchronization [Poincaré 1913]. Unfortunately, the device clock
rate is not constant, but varies with the GPU’s load. We currently
compensate for that by estimating the clock rate between each two
synchronization messages. Using the time synchronization compo-
nent, real-time scheduling strategies, such as earliest deadline first
scheduling [Liu and Layland 1973], can be implemented.

The application programming interface (API) essentially ex-
poses the following four classes to the application programmer: a
procedure interface, a workpackage interface, an event class, and
the scheduler object, which is available on the CPU and GPU. To
implement a new procedure or to provide a new type of workpack-
age, one may implement the respective interfaces and register their
implementation with the scheduler object. Listing 1 shows the sim-
ple structures of Softshell for GPU code. Listing 2 shows how the
scheduler is controlled from the CPU. The Softshell API provides
an efficient control mechanism for multi level parallel execution.
With a single command, work for a single thread, an entire group
of threads, or multiple groups can be created. Thus, complex algo-
rithms can easily be mapped for GPU execution. Softshell supports
a fully customized priority evaluation, whereby arbitrary schedul-
ing strategies can be generated by implementing a single function.

Listing 2: Host side API example: A few function calls are suf-
ficient to control the Softshell processing model. Upon initial-
ization, a custom priority evaluation can be specified via template
arguments. In this case, the scheduler is configured to execute the
TraverseProcedure before all others. Subsequently, a custom
event is created and triggered once, before the CPU waits for its
completion. The associated GPU code is depicted in Listing 1.

1 s t r u c t T r a v e r s e P r i o r i t y
2 {
3 d e v i c e s t a t i c f l o a t
4 p r i o r i t y (P r o c e d u r e∗ proc , Workpackage∗ wp)
5 {
6 i f (p r o c e d u r e E q u a l<T r a v e r s e P r o c e d u r e >(∗p roc))
7 r e t u r n 1 . 0 f ;
8 e l s e
9 r e t u r n 0 . 0 f ;

10 }
11 } ;
12
13 vo id m e s h s i m p l i f i c a t i o n (D e v i c e L i s t d e v i c e s)
14 {
15 S c h e d u l e r s c h e d u l e r ;
16 s c h e d u l e r . i n i t <T r a v e r s e P r i o r i t y >(d e v i c e s) ;
17 a u t o myEvent = s c h e d u l e r . c r e a t e E v e n t<TEvent > () ;
18
19 myEvent . t r i g g e r () ;
20 myEvent . j o i n () ;
21 }

6 Experimental results

To understand the characteristics of our Softshell implementation,
we measured the performance of the key scheduling components,
which are presented in the first half of this section. The second half
analyzes the advantages and disadvantages of the Softshell process-
ing model for selected computer graphics algorithms. All measure-
ments were run on the same machine featuring an Intel i7 2.80 GHz
Quad Core CPU and an NVIDIA Quadro 6000 graphics card.

6.1 Synthetic tests

The performance of our Softshell implementation is strongly re-
lated to the performance of our work queue. The overhead associ-
ated with issuing a workpackage equals the time it takes to enqueue
a workpackage. The time for starting the execution of a workpack-
age is made up by the dequeue time. How well the execution order
matches the workpackage priorities depends on the system’s ability
to sort the queue fast enough. Therefore, we focus our synthetic
tests on the different facets of our monolithic queue.

The queue performance was assessed by measuring the en-
queue and dequeue time for increasing thread counts and compar-
ing our method to the methods described by Tzeng et al. [Tzeng
et al. 2010]. The results of this comparison, as shown in Fig-
ure 6, demonstrate that our monolithic queue approach is magni-
tudes faster than the monolithic queue used by Tzeng et al.. The
performance difference between the two monolithic queuing ap-
proaches can be explained by the fact that our queue is lock-free
and uses localized state flags only, as outlined in Section 5. This
strategy results in a very small linear latency increase for each ad-
ditional thread accessing the queue concurrently: The enqueue time
tenq increases linearly with the number of active threads n accord-
ing to tenq ≈ 2.74µs+ n · 0.0025µs, while the dequeue time tdeq
increases with the number of active thread blocks b according to
tdeq ≈ 2.13µs + b · 0.003µs. Additionally, our queue also out-
performs all distributed queuing strategies with the only exception
being the localized distributed head, which is managed in shared
memory. As shared memory is limited and this part of the queue
is not shared between different blocks, its size must be kept small
not to stress shared memory and allow the distribution of work be-
tween different blocks. Thus, queue accesses will often be for-
warded to the queue tail, which resides in global memory. Con-
sequently, our monolithic queue will either perform comparable to
these distributed queuing techniques or even faster. As our opti-
mized monolithic queue is shared among all workers, we achieve a
very good work distribution [Tzeng et al. 2010] and can enable fine
grained priority queue management.

0

20

40

60

80

100

120

140

160

0 5000 10000 15000

La
te

nc
y

in
 µ

s

Threads

Enqueue Latency

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

La
te

nc
y

in
 µ

s

Thread Blocks

Deqeue Latency

Softshell Blocking Distributed Head

Distributed TailDonationStealing

Figure 6: Enqueue and dequeue performance of our monolithic
queue and the queuing strategies described by Tzeng et al. [Tzeng
et al. 2010]. The monolithic queue used in our Softshell imple-
mentation clearly outperforms other monolithic (blocking) queuing
approaches and outperforms most of the techniques used in dis-
tributed queuing (distributed tail, donation and stealing). The only
access which is faster than our approach is accessing the head of
the distributed queue, which is locally kept in shared memory.

An initial event launch involves an additional operation besides
queuing workpackages, which is sending a message from the CPU
to the GPU. Thus, the overhead for an event launch is increased by
the latency of the messaging component. To quantify this latency,
we have measured the round trip time of an 8 byte message, which
is on average 20.8µs± 4.6µs. Hence, we estimate the latency of a
one-way message to be approximately 10µs. If the mega-kernel is
not active, we would introduce this overhead in addition to the over-
head for starting the mega-kernel (approximately 20µs). To avoid
the additional overhead, we provide a second version of our mega-
kernel, which takes an initial message as argument for the kernel
launch. If the mega-kernel is not active when an event is triggered,
this version is called to initiate the creation of workpackages on the
GPU as quickly as possible. In case the kernel is already running, it
is most likely that the latency for sending a message will be hidden
by the execution already taking place on the device. Nevertheless,
this latency can still form a delay for the execution of high priority
events if the GPU is executing low priority events only. However,
the overhead for sending an execution message to the GPU and re-
ceiving a notification about the event being processed (≈ 21µs) is
significantly lower than starting a CUDA kernel and waiting for it
to be executed (≈ 47µs).

The scheduling performance itself was measured by generat-
ing a fixed number of workpackages with uniformly distributed
random priorities. This test case resembles a setup in which an
arbitrary number of events are active and all of the submitted work-
packages have arbitrary priorities. To measure the scheduling per-
formance in a single value, we computed the scheduling accuracy,
which captures the number of workpackages which were executed
according to the requested priorities. For an accuracy of 100%, all
workpackages must be executed exactly in the right order. An accu-
racy of 50% is reached, if in half of the cases a lower priority work-
package is executed before a higher priority workpackage. For our
test example with uniformly distributed priorities, this value forms
the lower bound, because it is reached if no scheduling is applied.
As shown in Figure 7, the more threads are used for scheduling op-
erations, the better the execution order fits the requested priorities.
The graphs also show that a great many (more than 20000) work-
packages with a short execution time (100µs) can only be sched-
uled as desired, if a reasonable large number of threads are desig-
nated to the controller block.

6.2 Example applications

In this section, we show that our method accelerates selected com-
puter graphics techniques significantly and opens new possibili-
ties for algorithmic advancement. For all comparisons between a
CUDA and a Softshell implementation, we do not alter the algo-
rithms themselves. We only replace the code needed for issuing
kernels by the Softshell interface implementations.

6.2.1 View-dependent mesh simplification

For our first comparison, we have implemented HDS [Luebke and
Erikson 1997] with a kernel launch behavior similar to state-of-
the-art approaches [Zhou et al. 2011] as already described in Sec-
tion 3.2. Our baseline CUDA implementation manages the fol-
lowing three data structures with the help of the highly optimized
CUDPP library: a set of active octree nodes, a set of boundary
nodes, and a list of active triangles. For each level, two custom
kernels (for analyzing and inserting nodes) and two parallel scans
(for active nodes and boundary nodes) are called. An additional
scan is run to layout vertices in memory before two kernels update
the vertex positions and emit triangles.

0.50

0.60

0.70

0.80

0.90

1.00

0 10000 20000 30000 40000

sc
he

du
lin

g
ac

cu
ra

cy

number of workpackages

64 threads per block, 111 worker blocks

0.50

0.60

0.70

0.80

0.90

1.00

0 10000 20000 30000 40000

sc
he

du
lin

g
ac

cu
ra

cy

number of workpackages

128 threads per block, 55 worker blocks

0.50

0.60

0.70

0.80

0.90

1.00

0 10000 20000 30000 40000

sc
he

du
lin

g
ac

cu
ra

cy
number of workpackages

256 threads per block, 27 worker blocks

1000µs 500µs 200µs 100µsProcedure Execution Time:

Figure 7: Scheduling accuracy for an increasing number of work-
packages with random priorities; worker blocks and controller
(sorter) contain an equal number of threads; the queue segment
size equals the block size. The more threads are used for sorting
the queue, the better the scheduling performance is. For short pro-
cedure execution times, the scheduler has problems to stick to the
priorities. If there are only a few workpackages in the queue, the
scheduler cannot acquire the first segment for sorting and thus the
accuracy drops to 50%.

The Softshell implementation manages all data dynamically dur-
ing execution. Hence, there is no need for CPU interaction until
the mesh is completely constructed. Work items are automatically
grouped by the work aggregation and the execution order is con-
trolled by Softshell, reducing the necessary programming effort in
comparison to the kernel-based implementation. This fact is also
captured in the lines of code required for programming the two
models: The CUDA implementations has 213 lines of code, while
the Softshell implementation consists of 184 lines.

For imbalanced octrees, the Softshell implementation is more than
two times faster than the kernel-based implementation, as shown
in Table 1. This performance gain is mainly due to the ability to
leave the control at the GPU and the ability to draw parallelism
from the breadth and depth of the octree. Because the Traverse
procedure creates new workpackages and the Generate Triangle
procedure does not, the number of available workpackages (and
also the utilization) is increased by prioritizing workpackages for
the Traverse procedure.

6.2.2 Path tracing

When implementing a path tracer [Kajiya 1986] on the GPU, the
greatly varying number of bounces of secondary rays prohibit co-
herent execution. Using the Softshell processing model, this prob-
lem can automatically be addressed by the third-tier scheduler.

Happy Buddha Dragon Bus

lev.3 lev.6 lev.9 dist mid close dist mid close
vert. 812 56k 796k 3.8k 143k 286k 130k 443k 1.6M

nodes 65 8.3k 362k 501 27k 66k 15k 98k 227k
CUDA 1.77 3.28 9.66 2.75 5.23 7.63 7.19 10.9 36.8

Softshell 0.87 1.66 9.15 0.85 2.48 3.47 3.11 5.42 24.9

Table 1: Octree-based mesh simplification: The Happy Buddha
dataset is constructed to a fixed octree level. The other two models
are constructed based on the current view (from distant to close),
for which the decreasing detail in the back leads to inhomoge-
neous traversal depths. The more nodes are used in the construc-
tion, the more vertices (vert) are created and the higher is the data
parallelism per level. The construction times for both techniques
are given in milliseconds. For balanced octrees with many nodes
(Happy Buddha level 9), the kernel-based CUDA implementation
is as fast as the Softshell implementation. In all other cases, Soft-
shell is superior because it leads to a better hardware utilization.

Our sample implementation consists of a single procedure that im-
plements a backward monte-carlo path tracer. For each of the
800 × 800 pixels, a single workpackage is created. Every thread
is mapped to one of the 512 rays randomly shot through each pixel.
Paths are traced until their contribution falls below 0.1%. Bounces
are modeled in a single loop, with the third-tier scheduler being in-
voked every 10th iteration. As test scene, we used a Cornell box
with a varying number of spheres influencing the number of di-
verging threads. The results provided in Table 2 show that in
this special example the use of dynamic thread regrouping can in-
crease performance to a certain extent. Although the probability of
a thread to be stalled during an iteration is 50%−76% and the exe-
cution time for this example is about a minute, the performance gain
achieved by thread regrouping is only 4− 15%. This confirms pre-
vious findings that it is hardly possible to gain performance using
dynamic thread regrouping for interactive applications [Parker et al.
2010]. Still, this example shows that for long running algorithms
with a high rate of thread divergence, dynamic thread regrouping
can boost performance.

While the previous example required considerably fewer lines of
code for the Softshell implementation, we encounter the reverse
situation in this case. The Softshell implementation consists of 95
lines, while the CUDA implementation needs 54 lines. The reason
for this change is the fact that this application consists of a single
kernel only, which can be expressed very efficiently in CUDA C,
while Softshell requires some boilerplate code to be written to indi-
vidually model all scheduling entities.

This example can be slightly altered to demonstrate the utility of
the second tier scheduler. Instead of creating one workpackage for
each individual pixel, we create one workpackage for each patch
of 4 × 4 pixels and initially shoot only four rays per pixel into the
scene, leading to 64 threads per workpackage. After tracing all 64
paths, we compute the color variance among the paths and resubmit
the workpackage, setting its priority proportional to the computed
variance. In this way, we prioritize areas for which we are uncer-
tain about the estimated pixel colors. When sending more rays into
the scene, we assume that the color converges to its real value and
thus reduce the workpackage priority every time the workpackage
is resubmitted. In this setup, the second tier scheduler deals with

div. 0.52 0.63 0.76

CUDA 50.4s 57.4s 66.8s

no T3 52.3s 59.4s 68.9s

ours 50.2s 54.8s 59.6s

Table 2: Path tracing with varying number of objects. The more
spheres are in the scene, the higher the probability that a thread has
to wait for others to finish (div). Using Softshell with no third-tier
scheduler (no T3) demonstrates Softshell’s overhead for workpack-
age management when compared to CUDA. As the third-tier sched-
uler is activated (ours), diverging threads are regrouped, leading to
performance increases of up to 15%.

fully dynamic workpackage priorities. Because uncertain image ar-
eas are executed first, the rendered image converges to the ground
truth faster than a system, which iteratively shoots the same number
of rays through all pixels, as shown in Figure 8.

0

2

4

6

8

10

0 0,5 1 1,5 2 2,5 3 3,5 4

M
SE

 x
 1

00
0

Time in seconds
No Priority Priority

Figure 8: Priority-based path tracing in Softshell for test scene
three: Adding rays to uncertain image regions first (blue), creates
high quality images with lower mean squared error in compari-
son to the ground truth more quickly than adding rays to pixels
uniformly (red). This behavior is implemented in Softshell by dy-
namically adjusting the priorities of image patches according to the
color-variance within the traced paths. The image on the right vi-
sualizes the number of traced rays (cp. result image in Table 2). For
white areas, many rays have been shot into the scene, while black
areas have been sampled sparsely. Note that uniform regions, like
the light source and the black sphere have hardly been sampled.

6.2.3 Image-based visual hull rendering

The image-based visual hull (IBVH) algorithm estimates images at
novel viewpoints directly from segmented camera images [Matusik
et al. 2000]. It is especially useful in interactive systems that must
produce output images with little delay. Without sacrificing image
quality, computing the IBVH can be constrained to those image
areas in which the underlying geometry has changed [Hauswiesner
et al. 2011]. After detecting changes in the scene geometry, only
those image areas with a change magnitude above a threshold are
recomputed and the remaining areas are warped from the previous
image. This threshold controls the output quality directly, but it
only indirectly affects the execution time.

For interactive systems, it is desirable to directly constrain runtime
and to maximize the image quality within the available time-frame.
Using Softshell, a system implementing this behavior can easily
be realized. Workpackages are created for the entire image. Their
priority is set to the average change magnitude of their associated

region, so that image areas with substantial changes will be pro-
cessed first. During execution of each workpackage, the remaining
time and remaining number of workpackages are queried. Based
on the known, constant execution time of image warping, we can
decide whether to run the IBVH algorithm or image warping. In
this way, quality can dynamically be traded for execution time to
guarantee the frame rate, as shown in Figure 9.

0

50

100

150

200

250

Softshell Quality-controlled

Dress

67

Walking Waving

R
en

de
ri

ng
 T

im
e

(i
n

m
s)

Figure 9: Image-based visual hull (IBVH) rendering with a target
time-constraint of 67ms to match the camera frame rate. In this
system, we use a low-latency image warping approach for image
areas of little change and a full IBVH construction for areas of
high change. The tested algorithms differ in the heuristics used
to choose between IBVH and image warping. A fixed threshold
determined prior to a kernel-launch does not lead to the desired
result (red dots). The Softshell implementation makes this decision
dynamically, based on the time remaining for the current frame.
Work of higher-priority is scheduled first, generating the highest
possible quality in the specified time (blue dots).

6.2.4 GPU X3D parser

As the demand for high-quality graphics rises, art assets rapidly
grow larger. Parsing a file containing a large model can take a sig-
nificant amount of time. Using the GPU for parsing model files can
speed up this process. However, the X3D file format is composed of
many independent constructs, thus, writing efficient parallel GPU
code for parsing is no trivial task. Using the BSGP programming
model, such a system can be implemented with less programming
effort [Hou et al. 2008]. For the execution, still about 80 kernel-
functions are automatically created.

For comparison, we provide our own X3D parser in Softshell,
which works similar to the BSGP X3D parser. We divide the pars-
ing into two events: At first, we use six procedures (two of them
implement sorting and the scan algorithm) to generate a skeleton
of the XML-tree. The scan and sort algorithms are called multi-
ple times, for data sizes that individually could not fully occupy the
GPU. Softshell schedules these algorithms concurrently whenever
data or parts of the data become available. Due to its kernel-based
structure, the BSGP parser executes these steps sequentially, losing
performance in comparison to our implementation.

In a second step, we parse the XML-tree using one procedure per
supported X3D-tag. In this way, the parser can easily be extended
to support new X3D-tags. The execution starts at the root node and
a new workpackage is created for each encountered node. Thus,
groups of threads work on the individual nodes in parallel, while the
thread count is dynamically adjusted to the node type. Depending
on the node type, new workpackages for child nodes are generated
and/or output data is written either to the vertex buffer or a state
buffer, which is then used during rendering to adjust the OpenGL

state machine. Softshell schedules workpackages for the different
X3D-tag procedures concurrently and therefore increases the GPU
utilization. In this way, our X3D parser can launch a higher number
of coherently executing thread groups than the BSGP parser. Ad-
ditionally, the control flow remains entirely on the GPU until the
model is ready to be rendered, and a costly back and forth between
GPU and CPU is avoided. For a complex scene (Figure 10), parsing
takes BSGP 71.25ms, while the Softshell implementation is nearly
twice as fast with 36.56ms.

Figure 10: GPU-based X3D parsing: The 13MB test scene con-
tains 2300 nodes of which 1400 are shape defining.

7 Conclusion

We have presented Softshell, a novel processing model for devices
composed of multiple SIMD units, such as GPUs. Our processing
model enables a more sophisticated control of parallel execution
and provides an intuitive API. Thus, it becomes possible to effi-
ciently map algorithms with a relatively low degree of local paral-
lelism for the execution on massively parallel architectures. Soft-
shell’s key features include the ability to generate arbitrary amounts
of work directly on the executing device, dynamically adjust prior-
ities for small portions of work, and the ability to control work that
has already been submitted to the GPU. Our tests demonstrate that
these features can improve the performance of computer graphics
applications in particular and potentially open up new possibilities
in the field of GPU computing in general.

Acknowledgments

We thank Qiming Hou, Zhejiang University, for his implementation
of the BSGP X3D parser and Martin Kenzel for the car models and
textures. This research was funded by the Austrian Science Fund
(FWF): P23329.

References

ADVANCED MICRO DEVICES. 2011. AMD Accelerated Parallel
Processing OpenCL - Programming Guide.

AGULLO, E., AUGONNET, C., DONGARRA, J., LTAIEF, H.,
NAMYST, R., THIBAULT, S., AND TOMOV, S. 2010. Faster,
cheaper, better – a hybridization methodology to develop linear
algebra software for gpus. In GPU Computing Gems, vol. 2.
Morgan Kaufmann, Sept.

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of
ray traversal on GPUs. In Proc. High Performance Graphics,
ACM, HPG ’09, 145–149.

BATCHER, K. E. 1968. Sorting networks and their applications.
In Proc. Spring Joint Computer Conference, ACM, AFIPS ’68,
307–314.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. 2004. Brook for
GPUs: stream computing on graphics hardware. ACM Trans.
Graph. 23, 3 (Aug.), 777–786.

CEDERMAN, D., AND TSIGAS, P. 2008. On dynamic load bal-
ancing on graphics processors. In Proc. ACM SIGGRAPH/EU-
ROGRAPHICS symposium on Graphics hardware, Eurographics
Association, GH ’08, 57–64.

CHATTERJEE, S., GROSSMAN, M., SBIRLEA, A., AND SARKAR,
V. 2011. Dynamic task parallelism with a GPU work-stealing
runtime system. In Proc. Workshop on Languages and Compil-
ers for Parallel Computing, LCPC ’11.

CHEN, L., VILLA, O., KRISHNAMOORTHY, S., AND GAO, G.
2010. Dynamic load balancing on single- and multi-GPU sys-
tems. In Proc. Parallel Distributed Processing, IEEE, IPDPS, 1
–12.

FREY, S., AND ERTL, T. 2010. PaTraCo: A Framework Enabling
the Transparent and Efficient Programming of Heterogeneous
Compute Networks. In Proc. Eurographics Symposium on Par-
allel Graphics and Visualization, EGPGV10, 131–140.

FUNG, W. W. L., SHAM, I., YUAN, G., AND AAMODT, T. M.
2007. Dynamic warp formation and scheduling for efficient GPU
control flow. In Proc. IEEE/ACM International Symposium on
Microarchitecture, IEEE, MICRO 40, 407–420.

GUPTA, K., STUART, J. A., AND OWENS, J. D. 2012. A study of
persistent threads style gpu programming for gpgpu workloads.
In Innovative Parallel Computing, 14.

HAUSWIESNER, S., STRAKA, M., AND REITMAYR, G. 2011.
Coherent image-based rendering of real-world objects. In Proc.
Symposium on Interactive 3D Graphics and Games, ACM, I3D
’11, 183–190.

HORMATI, A. H., SAMADI, M., WOH, M., MUDGE, T., AND
MAHLKE, S. 2011. Sponge: portable stream programming on
graphics engines. In Proc. Architectural support for program-
ming languages and operating systems, ACM, ASPLOS ’11,
381–392.

HOU, Q., ZHOU, K., AND GUO, B. 2008. BSGP: bulk-
synchronous GPU programming. ACM Trans. Graph. 27, 3
(Aug.), 19:1–19:12.

HOU, Q., ZHOU, K., AND GUO, B. 2009. Debugging GPU stream
programs through automatic dataflow recording and visualiza-
tion. ACM Trans. Graph. 28, 5 (Dec.), 153:1–153:11.

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Comput.
Graph. 20, 4 (Aug.), 143–150.

KATO, S., LAKSHMANAN, K., RAJKUMAR, R., AND ISHIKAWA,
Y. 2011. TimeGraph: GPU scheduling for real-time multi-
tasking environments. In Proc. USENIX annual technical con-
ference, USENIX Association, USENIXATC’11, 2–2.

KHRONOS. 2008. OpenCL The standard for heterogeneous parallel
programming. Khronos OpenCL Working Group.

LIU, C. L., AND LAYLAND, J. W. 1973. Scheduling algorithms
for multiprogramming in a hard-real-time environment. J. ACM
20 (January), 46–61.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent simplifi-
cation of arbitrary polygonal environments. In Proc. SIGGRAPH
’97, ACM, 199–208.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J.,
AND MCMILLAN, L. 2000. Image-based visual hulls. In Proc.
SIGGRAPH ’00, ACM, SIGGRAPH ’00, 369–374.

MCCOOL, M. D., QIN, Z., AND POPA, T. S. 2002. Shader
metaprogramming. In Proc. ACM SIGGRAPH/EUROGRAPH-
ICS conference on Graphics hardware, HWWS ’02, 57–68.

NVIDIA, 2009. NVIDIA’s next generation CUDA compute archi-
tecture: Fermi. White paper. Available online.

NVIDIA. 2011. NVIDIA CUDA Compute Unified Device Archi-
tecture - Programming Guide. NVIDIA.

NVIDIA. 2012. NVIDIAs NextGeneration CUDA Compute Archi-
tecture: Kepler TM GK110, May.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. Op-
tiX: a general purpose ray tracing engine. ACM Trans. Graph.
29, 4 (July), 66:1–66:13.

POINCARÉ, H. 1913. The Measure of Time. New York: Science
Press.

ROSSBACH, C. J., CURREY, J., SILBERSTEIN, M., RAY, B., AND
WITCHEL, E. 2011. PTask: operating system abstractions to
manage gpus as compute devices. In Proc. ACM Symposium on
Operating Systems Principles, ACM, SOSP ’11, 233–248.

SANCHEZ, D., LO, D., YOO, R. M., SUGERMAN, J., AND
KOZYRAKIS, C. 2011. Dynamic fine-grain scheduling of
pipeline parallelism. In Proc. International Conference on Paral-
lel Architectures and Compilation Techniques, IEEE, PACT ’11,
22–32.

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE, A., SUGER-
MAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN,
T., AND HANRAHAN, P. 2008. Larrabee: a many-core x86
architecture for visual computing. ACM Trans. Graph. 27, 3
(Aug.), 18:1–18:15.

SHA, L., ABDELZAHER, T., ARZEN, K.-E., CERVIN, A.,
BAKER, T., BURNS, A., BUTTAZZO, G., CACCAMO, M.,
LEHOCZKY, J., AND MOK, A. K. 2004. Real time scheduling
theory: A historical perspective. Real-Time Syst. 28, 2, 101–155.

STEINBERGER, M., KENZEL, M., KAINZ, B., AND SCHMAL-
STIEG, D. 2012. ScatterAlloc: Massively Parallel Dynamic
Memory Allocation for the GPU. In Proceedings of Innovative
Parallel Computing (InPar12).

SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
AND HANRAHAN, P. 2009. GRAMPS: A programming model
for graphics pipelines. ACM Trans. Graph. 28, 1, 1–11.

TANENBAUM, A. S. 2007. Modern Operating Systems. Prentice
Hall Press, Upper Saddle River, NJ, USA.

TZENG, S., PATNEY, A., AND OWENS, J. D. 2010. Task man-
agement for irregular-parallel workloads on the GPU. In Proc.
High Performance Graphics, Eurographics Association, HPG
’10, 29–37.

ZHOU, K., HOU, Q., REN, Z., GONG, M., SUN, X., AND GUO,
B. 2009. RenderAnts: interactive Reyes rendering on GPUs.
ACM Trans. Graph. 28, 5 (Dec.), 155:1–155:11.

ZHOU, K., GONG, M., HUANG, X., AND GUO, B. 2011. Data-
parallel octrees for surface reconstruction. IEEE Transactions
on Visualization and Computer Graphics 17, 5 (May), 669–681.

