
EUROGRAPHICS 2017 / L. Barthe and B. Benes
(Guest Editors)

Volume 36 (2017), Number 2

ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

Karl Haubenwallner1, Hans-Peter Seidel2 and Markus Steinberger2

1Graz University of Technology, Austria
2Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

(a) Uncontrolled Generation (b) Controlled Generation

Figure 1: (a) Procedural approaches can generate models with large variety. (b) Given a high level target as a sketch (drawing at the far
right), the generation can be directed towards this goal. Previous approaches are either tuned for speed (SMC, red circle and SOSMC, orange
circle) and thus might not reach the desired result, or require a long time to achieve a good result (RJMCMC, green circle); our proposed
solution using a genetic algorithm converges fast and achieves high quality results (blue circle), clearly matching the target the best.

Abstract
In this paper, we show that genetic algorithms (GA) can be used to control the output of procedural modeling algorithms. We
propose an efficient way to encode the choices that have to be made during a procedural generation as a hierarchical genome
representation. In combination with mutation and reproduction operations specifically designed for controlled procedural
modeling, our GA can evolve a population of individual models close to any high-level goal. Possible scenarios include a volume
that should be filled by a procedurally grown tree or a painted silhouette that should be followed by the skyline of a procedurally
generated city. These goals are easy to set up for an artist compared to the tens of thousands of variables that describe the
generated model and are chosen by the GA. Previous approaches for controlled procedural modeling either use Reversible Jump
Markov Chain Monte Carlo (RJMCMC) or Stochastically-Ordered Sequential Monte Carlo (SOSMC) as workhorse for the
optimization. While RJMCMC converges slowly, requiring multiple hours for the optimization of larger models, it produces high
quality models. SOSMC shows faster convergence under tight time constraints for many models, but can get stuck due to choices
made in the early stages of optimization. Our GA shows faster convergence than SOSMC and generates better models than
RJMCMC in the long run.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling —Geometric algorithms, languages, and systems

1. Introduction

Procedural modeling not only has a long history in computer graph-
ics, but also sees increasing interest in recent years as the demand for
detailed models and large virtual worlds is growing rapidly. Using a
procedural approach, a wide variety of detailed variants of a model
or family of models can be generated by altering the parameters

that control the procedural generation. Examples include vegetation
models, which can generate everything from small bushes to full
leaf and needle trees [PSK∗12], and building grammars, which can
generate everything from dog sheds to skyscrapers [SM15]. While
such generative models potentially offer technical artists the ability
to create a complex object within seconds, achieving a desired result

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

Figure 2: A procedural approach that can generate random trees
can be controlled to generate a model whose shadow resembles an
arbitrary logo. The approach controlling the generation needs to
find an appropriate tree structure and choose tens of thousands of
parameters to find a suitable shape. The result was obtained with
our GA in eight hours.

is often still a complicated and time-consuming process. Because
the model’s parameters can control recursive generation processes
and small parameter adjustments can be amplified throughout the
generation, the influence of a single parameter on the final model
is often unpredictable and artists have to rely on excessive trial and
error. Unsurprisingly, this cumbersome process turns many artists
away from procedural modeling back to manual model generation.

As a remedy to this problem, the processes of procedural genera-
tion have been cast as a probabilistic inference problem [TLL∗11].
Given a procedural generator that has the expressive power to gen-
erate a suitable model and a scoring function that tells how close a
model is to the desired goal, these approaches view the generation of
a model as drawing a sample from a probability distribution. Naively
speaking, the scoring function allows for an optimization over the
entire space of possible models to find a model that fits the scoring
function as closely as possible. The approach is complicated by the
fact that the space of possible models is trans-dimensional, theoret-
ically unbounded, and lies in a mixed domain space; the scoring
function is in general non-linear and non-convex; and generating
a model and evaluating the scoring function can take significant
amounts of time. Clearly, the problem of finding a set of parameters
that generates a model that matches a given target is a non-trivial
problem, e.g., consider the result shown in Figure 2.

Most previous approaches on probabilistic inference for procedu-
ral generation rely on Markov Chain Monte Carlo (MCMC) meth-
ods, specifically the Reversible Jump Markov Chain Monte Carlo
method (RJMCMC) to cope with the trans-dimensionality, to solve
the problem [TLL∗11, SPK∗14, YYW∗12]. As alternative to the
relatively slow converging RJMCMC, a variant of the sequential
Monte Carlo (SMC) method, namely stochastically-ordered sequen-
tial Monte Carlo (SOSMC) has been proposed [RMGH15]. While
SOSMC, in general, improves on the convergence of RJMCMC,
there is a possibility that it gets stuck in bad initial conditions,
especially if the procedural models become more complex. Also,
SOSMC requires the scoring function to yield reasonable results for
unfinished models, which cannot be guaranteed in general. Given

the mere existence of only two classes of approaches for the proba-
bilistic inference problem in targeted procedural modeling and the
increasing importance of (semi)-automated content creation, we see
high potential benefits in exploring further alternatives.

In this paper, we show that genetic algorithms (GA) can be used
for controlled procedural modeling. While the principles of GAs
are not new, applying GA to a new domain is never without new
challenges. We tackle these challenges and make the following
contributions:

• We present a unifying framework that, while geared towards GA,
can be used for various optimization methods like RJMCMC or
SOSMC, allowing for a direct performance comparison.

• We present a simple yet efficient way to encode a variety of
procedural generation approaches as genomes, used by but not
limited to GA for controlled procedural modelling.

• We show how the core operations of a GA—reproduction and
mutation—can be implemented for these genomes such that only
valid modeling operations are created.
• We show that our GA yields significantly better convergence rates

than the previous state-of-the-art implementations, especially
when more complex models are generated.

In the following, we give an overview of related work (Sec-
tion 2); introduce GA for controlled procedural modeling (Sec-
tion 3); present our genome representation for procedural modeling
(Section 4); explain the mutation and reproduction operations (Sec-
tion 5); provide details on the GA setup (Section 6); show how
RJMCMC and SOSMC can be modeled within the same genetic
algorithm framework (Section 7); compare our GA implementa-
tion against previous state-of-the-art for different kinds of scoring
functions and generation methods (Section 8); and summarize the
findings (Section 9).

2. Related Work

Procedural Modeling has been a part of computer graphics for
decades. Among the first procedural modeling approaches were
Stiny’s original shape grammars [Sti75] and Lindenmayer’s L-
systems [Lin68, PL91]. Starting with these early works, a variety of
approaches have been proposed, including realistic trees [WP95],
plants [LD98], trees interacting with their environment [MP96],
split grammars for facades [WWSR03], botanic trees [OOI05],
a language for complex objects [Hav05], a grammar for build-
ings [MWH∗06], self-organizing tree models [PHL∗09], inter-
connected structures [KK11], plastic trees [PSK∗12], and com-
plex buildings [SM15]. At the same time, speeding up procedu-
ral generation on modern hardware has received increasing inter-
est [Mag09,MBG∗12,SKK∗14a,SKK∗14b,BDK∗16]. Our approach
can be used for any of the previously mentioned procedural ap-
proaches and will benefit directly from faster generations.

Controlled Procedural Generation has received increasing inter-
est in recent years. Viewing procedural generation as an inference
problem, high-level goals can be considered during generation. Tal-
ton et al. used the reversible jump MCMC (RJMCMC) algorithm, a
variant of the Metropolis Hastings (MH) algorithm for controlled
grammar-based procedural modeling [TLL∗11]. While their im-
plementation achieved impressive results choosing thousands of

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

(a) Uncontrolled Generation (b) Controlled Generation

Figure 3: (a) Although quite simple, the spaceship generator can
produce a variety of ships. (b) Given a volumetric target (dark
shape), the generation can be optimized to fill the target. Note
that the best solutions of different algorithms (GA: blue, SMC:red,
SOSMC: orange, RJMCMC:green) differs not only in the size of the
parts but the structure of the entire ship.

parameters for tree and building models to match target volumes
and silhouettes, their MH algorithm also requires tens of thousands
of iterations to converge, leading to running times of up to multiple
hours. When using MCMC to only choose a few parameters, e.g.,
to position a small number of pieces of furniture, good results can
be obtained within a second [MSL∗11]. However, more complex
furniture layout generation, which also require RJMCMC methods,
increases the running time again to minutes or hours [YYW∗12]. In
case one is not interested in a specific model, but rather a sub-family
of models that are similar to a target, finding a suitable similar-
ity measure is a non-trivial task [SPK∗14]. With such a similarity
measure in place, MH can be used to choose a small number of
meta-parameters for the sub-family. However, running times might
still be long due to costly similarity evaluations. Tackling the rather
long convergence time of the MH algorithm and its variants for
controlling procedural modeling, the sequential Monte Carlo (SMC)
approach can be seen as a combination of guided procedural model-
ing [BvMM11] with probabilistic inference. Models are not only
scored when they are fully generated, but the score of early stages
of the generation determines how likely it is that the generation of
a model continues. Ritchie et al. proposed a stochastically ordered
variant of the sequential Monte Carlo approach (SOSMC), where
the execution of the possible modeling paths is permutated randomly
[RMGH15]. For simple models, good results can be obtained within
seconds or minutes, outperforming MH approaches when only little
time is available.

Our approach can be seen as an alternative to MH and SOSMC,
showing even better convergence rates than SOSMC under tight
time constraints and outperforming MH in the long run.

Evolutionary Approaches have been used in computer graphics
before. Most noteworthy is the work by Sims. He showed that evo-
lutionary algorithms with simple mutation and random crossover
operations can be used to generate 3D plant structures, images,
textures, and animations [Sim91]. In his follow-up work, he de-
scribed the genotypes and phenotypes of virtual creatures including
their animation using evolutionary algorithms, allowing them to
walk, jump, and swim [Sim94]. Sims’ approach sparked a variety
of approaches following the same direction, like, e.g., Creature
Academy [PJ08], which uses Sims’ encoding schemes to evolve
creatures that are capable of a variety of motions. Evolutionary

Wing:
(sx,sy,sz,o)

Body:
(sx,sy,sz)

Top:
(sxz,sy)

.5.4

.8.7

.9

(a) (b) (c)

Figure 4: (a) The generator graph for the simple spaceship mod-
els (Figure 3) consists of three nodes: Each part can generate an
instance of itself (probabilities next to edges). The body part may
generate a top and a wing part. All parts are parameterized by scal-
ing factors; the wing has an additional offset. (b,c) The derivation
tree fully describes a generated model. (b) corresponds to the center
model of Figure 3(a), (c) to the blue ship in Figure 3(b). Note that
parameter choices are not shown here due to the size of the graphs.

algorithms have also been used to control L-systems to optimize
parameters of 2D-plants [Och98], or fit basic 2D shape grammars
to simple targets [OSM∗09]. They have also been applied for real
world objects [FP98], enabling the design of robots that can be as-
sembled using Lego bricks. Genetic Algorithms can also be used for
shapes within shape collections, extending the variety of models in
design galleries [XZCOC12]. In this ‘fit and diverse’ gallery, evolu-
tion is not applied on an abstract genome representation, but directly
on the models by exchanging their parts using fuzzy crossover opera-
tions. While the aforementioned evolutionary approaches have been
used to represent shapes and models, they either work directly on
model parts or a high-level, meta-graph which allows edges between
arbitrary nodes. Similarily, Martin et al. [MLCB10] used a GA to
extend the variety of design gallery for a computer game, using a
generative language to create models of buildings. Applying GA to
inference problems for procedural generation has different require-
ments and a direct adoption of the previous representations is not
possible. With our work we provide such a representation and un-
derline the special requirements of controlled procedural generation
with GAs.

3. Genetic Algorithms and Controlled Procedural Modeling

Virtually all approaches that are classified as procedural model-
ing, can be described in a unified way: they apply a sequence of
modeling operations on objects. Each operation either alters an ob-
ject or generates new objects, on which modeling operations can
again be applied. These objects are in turn translated into geometry
that constitutes the generated model. The operations are usually
parameterized, e.g., translate by vector t, rotate by angles (φx, φy,
φz), and so on. These parameters are generally chosen at random
to add variations to the generated models. Also, the number and
type of generated objects may be chosen randomly. Based on these
observations it seems natural to capture procedural generation as
directed graphs (with cycles). This fact has been explicitly noted for
L-systems [Boe95], shape grammars [Pat12], and stack-based mod-
eling languages [Hav05] before. Also languages like the one used
by Ritchie et al. [RMGH15] can be translated into a directed graph
by applying the principles of data flow programming [WA85]. Thus,

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

we do not limit our approach to any specific procedural approach,
but only work with a directed graph representation, where nodes
correspond to parameterized operations and the edges correspond
to objects. We simply call the description of the procedural gener-
ation in their respective language a procedural generator and the
associated graph the generator graph, see Figure 4(a) for a simple
example.

The generator graph describes the procedural generation itself
and thus all models that can be generated by that generator. The gen-
eration of a specific model can also be described by a graph or, more
specifically, a tree. This tree captures all intermediate objects as they
move through the generator graph, with the operations applied to
them including the randomly chosen parameters. In grammar-based
modeling this tree is called derivation tree [Sip06]. Although we do
not limit our approach to grammar-based modeling, we do adopt
this name. As the operations can generate a different number of
objects at random, the derivation trees for different models can vary
in structure and number of parameters, as shown in Figure 4(b,c). In
any case, a model is fully described by its derivation tree.

For complex models, derivation trees can become very large, con-
taining tens of thousands of nodes with as many or more parameters.
This underlines that expecting a technical artist to choose these pa-
rameters by hand is infeasible. As the derivation tree describes the
generation, we can view controlled procedural modeling as an opti-
mization problem or Bayesian inference problem of derivation trees.
Each possible derivation tree corresponds to a sample from the pro-
cedural generator, leading to Bayesian inference. At the same time,
finding those derivation trees that maximize the scoring function
creates a classical optimization problem. The problem is obviously
in a mixed domain: deciding whether a node should be added to the
tree is a boolean decision; the parameters describing operations in
Euclidean space are in the continuous domain. Also, derivation trees
of different models have different structures, which emphasizes the
trans-dimensional nature of the problem.

Genetic algorithms are well suited for this kind of problem. GA
is inspired by evolution and natural selection, where traits and char-
acteristics of individuals of a species are encoded as genes. Due to
the selection process individuals with successful traits get a higher
chance to pass on their genes to future generations, while less suc-
cessful traits tend to disappear, overall leading to a better adapted
population. The basic steps of GA are outlined in Algorithm 1. For
controlled procedural modeling we want each individual to represent
a derivation tree. During evolution individuals can be altered (mu-
tated) and information from different individuals can be combined
(reproduction). To use GA for controlled procedural modeling we re-
quire mutation and reproduction operations that work on derivation
trees while making sure the resulting derivation trees conform with
the generator graph. The complexity of the optimization—working
in a mixed domain and the trans-dimensionality—is hidden in these
two operations. To determine the fitness of individuals, as required
by a GA, we directly use the scoring function, which can also in-
clude additional constraints like the size of the derivation tree or
how balanced the tree should be. However, two challenges need to
be solved: (1) an encoding of the derivation tree as genome repre-
sentation is required, and (2) the genetic operations for mutation
and reproduction need to be described.

Algorithm 1: The basic structure of genetic algorithms is
straightforward. A population of individuals are managed for a
given number of generations. The best individuals are allowed
to influence the next generation, by either copying them directly,
mutating them, or allowing them to reproduce.

Function GeneticAlgorithm
population← { }
for i ∈ {1 . . . PopulationSize } do

append(population, newIndividual())

for j ∈ {1 . . . MaxGenerations } do
fitness← evaluateFitness(population)
sort(population, fitness)
newPopulation← { }
for k ∈ {1 . . . Elitism } do

append(newPopulation, population [k])
for k ∈ {1 . . .(PopulationSize- Elitism )/2} do

par1← select(population,fitness)
par2← select(population,fitness)
if rand() ≤ MutationProbability then

chld1← mutate(par1)
chld2← mutate(par2)

else
chld1,chld2← reproduce(par1, par2)

append(newPopulation, chld1, chld2)

population← newPopulation

4. Genome Representation for Procedural Models

The genome representation must be able to encode all possible solu-
tions to the problem, i.e., all possible derivation trees. To describe
the genome representation we use the following terms: a gene is
the smallest element of the genome; a chromosome is the set of
genes that make up an individual. Ideally, the representation of a
chromosome and hence a gene should be simple and allow for effi-
cient genetic operations. Furthermore, the fitness evaluation requires
a translation of the chromosomes into their expression, i.e., into
a geometric model. Thus, given the chromosome, we want to run
the procedural generator replacing the random decisions with the
parameters decoded from the chromosome in an efficient manner.

Because each chromosome needs to encode the derivation tree, the
traditional GA approach of using bit-strings of fixed size as genome
representation is not feasible. We propose to store the derivation
tree directly as nodes and edges, similar to Sims’ graph represen-
tation [Sim94]. Every node is described by one gene. Each gene
keeps a reference to its corresponding node in the generator graph,
the parameters chosen for its associated operation, and a pointer for
each possible output object, i.e., child node, which we set to empty
if no output is generated. If an output is present, it points to the gene
within the same chromosome that encodes the generated object. Fur-
thermore, every gene stores a pointer to the gene that describes its
parent node. We call the pair of pointers between a parent and child
gene a connection. Each connection is associated with an edge in
the generator graph. Note that genes are of different size, depending
on which node and operation they describe. We pack all genes of

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2),15,~,8][W,-8,(1.1,0.3,0.4,-0.3),~][B,-15,(1.0,0.9,1.3),~,~,~]

(a) Our packed genome representation encodes a derivation tree with parameters flattened out in memory. Every gene (separate bar) has a symbolic link to its
generation tree node (first entry), identifying the meaning of the stored parameters and making sure a valid generation is represented. Each gene stores the
relative offset to its parent (second entry), as well as the relative offset to each child; if a child is not present the entry is empty.

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2),15,~,8][W,-8,(1.1,0.3,0.4,-0.3),15][B,-15,(1.0,0.9,1.3),~,~,~][W,-15,(1.5,0.2,0.2,0.4),~]

(b) The grow mutation adds another gene to the chromosome. It can simply be added to the back of the chromosome and only the offsets of the parent need to be
adjusted. Thus the operation is very efficient.

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2),15,~,8][W,-8,(1.1,0.3,0.4,-0.3),15][B,-15,(1.0,0.9,1.3),~,~,~][W,-15,(1.5,0.2,0.2,0.4),~]

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2), ~, ~,8][W,-8,(1.1,0.3,0.4,-0.3), 7 ][W,-7,(1.5,0.2,0.2,0.4),~]

(c) The cut mutation (top to bottom) not only removes the cut gene, but the entire sub-tree of dependent genes (grayed out). Thus, arbitrary amounts of memory
can be removed. However, with a single sweep starting at the gene that is removed, we can remove all dependent genes and at the same time compact the
representation by copying the remaining genes to the front and adjusting the offsets.

Figure 5: Example of our genome representation and mutations applied to the example spaceship from Figure 3(a) and 4(b)

one chromosome compactly in memory. The pointers are stored as
local relative memory offsets, which allows for efficient copying of
subtrees; see Figure 5(a) for an example.

Our genome representation allows for variable length chromo-
somes and easy insertion of new genes into the chromosome without
changing the already existing entries. Furthermore, copying genes
from one individual to another can be carried out efficiently due
to the use of local offsets. The reference to the generator graph
is required to ensure that operations on the chromosomes do not
yield individuals that cannot be created by the procedural generator,
i.e., lie outside of the sampling space. Within the generator graph
we additionally store the distribution of each random variable and
probability for each output object. Thus, the GA has all required
information available in the generator graph and can construct any
chromosome using the genome representation.

5. Genetic Operations

At the core of each GA there are two genetic operations that evolve
the population: mutation and reproduction. Mutation allows the GA
to explore the problem space outside the already existing population
by introducing random modifications to the genes of an individual,
i.e., generate a sample that is outside the space spanned by the indi-
viduals of the current population. Reproduction combines features
from two individuals, creating individuals that contain parts of both
parents and possibly yield better results than either of them. Com-
bining traits from different high-scoring derivation trees, the GA
may be able to converge faster.

Mutation. As the chromosomes of an individual not only encode
parameters, but also the structure of the generation, we propose to
use three different mutation operations: grow, cut, and alter.

Grow, outlined in Figure 5(b), appends a gene to a gene that does
not generate the maximum number of children in its current form.
We choose a gene i and its non-expressed child j with the probability

pgrow,i, j =
pi, j

∑k ∑l pk,l
,

with pi, j being the probability of object j being generated by a node
of type i; k runs over all genes that do not express their maximum
number of children; l runs over those non-expressed children. Thus,
the probability of adding a gene is proportional to the likelihood
of the object represented by the gene being generated in an uncon-
trolled generation. After a new gene has been added we choose its
parameters randomly based on the probability distributions stored
in the generator graph. The gene can simply be added to the back of
the chromosome and grow is thus very efficient.

Cut, outlined in Figure 5(c), removes a random gene and the
sub-tree that follows it. The probability of choosing a gene i is

pcut,i =
1− p j,i

∑k ∑l(1− pk,l)
,

where k runs over all genes that have children and l over those
expressed children. Thus, genes are removed with a probability that
is inverse proportional to the likelihood that the object represented
by the gene is generated in the uncontrolled production. Note that
objects which are generated with a probability of one are never cut
and thus no invalid derivation trees are generated. If there is no gene
with a probability pcut,i 6= 0, no cut is applied. Although cut may
involve the removal of multiple genes which are spread across the
chromosome, the operation can be completed efficiently, sweeping
over the chromosome, moving non-removed genes further to the
front essentially replacing removed ones and adjusting the local
offsets. The operation can therefore be completed in O(G), where
G is the chromosome length. This guarantees that the operation
remains efficient even for more complex derivation trees.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

(a) (b)

Figure 6: (a) Our crossover operation chooses one random gene
connection in the left parent (red highlight), identifies all match-
ing connections from the right parent by consulting the generator
graph (red edges) and chooses one at random (red highlight). (b)
Exchanging the subtrees (yellow and purple) yields two offspring.

Alter changes the parameter values of a random gene. We choose
a gene with parameters from the chromosome with equal probability
and replace all its parameters by drawing a new random sample
from the parameter’s distribution as described in the generator graph.
Alter is obviously the simplest and most efficient mutation.

Reproduction. Our reproduction operation is an adapted version
of the single-point-crossover, which creates a pair of children from a
pair of parents. In its basic form the single-point-crossover selects a
random crossover point in both parent chromosomes and creates the
offspring by swapping the genes at the crossover point. This strategy
cannot be directly applied to chromosomes describing a derivation
tree since the results may be incompatible with the generator graph.

Our proposed crossover operation selects a random gene connec-
tion from the first parent, chooses another random connection from
all compatible connections in the second parent, and exchanges the
genes including all successors at these connections. The set of com-
patible connections contains those that describe the same edge in the
generator graph. In this way, we can guarantee that the offspring are
compatible with the generator. The crossover operation is outlined
in Algorithm 2 and Figure 6. With our genome representation the
crossover operation is efficient, since compatible connections can
easily be selected based on the reference to the generator graph and
copying genes from a parent can be viewed as combination of cut
and grow operations, which are both efficient as well.

6. Genetic Algorithm Setup

The selection method is one of the central parts of a GA. It deter-
mines which individuals are allowed to reproduce and influence the
next generation. The selection is usually done by selecting individ-
uals according to their fitness, with some margin for stochasticity.
A purely deterministic selection method would select the best indi-
viduals only, limiting the exploration of the problem space to the
proximity of the fittest individual, while a purely random method
would lead to an entirely undirected exploration decreasing the prob-
ability of finding a good solution considerably. There exist several
selection methods that take the fitness into account while allowing
for random deviation. The most widely used ones are roulette wheel
and k-tournament selection [BT96].

Algorithm 2: Our proposed crossover operation is computation-
ally efficient, as every offspring is a valid chromosome duo to the
explicit links to the generator graph. Thus, crossover involves
only drawing two random numbers and copying genes.

Function reproduce(parent1, parent2)
for i ∈ {1 . . . MaxRetries } do

C1← connections(parent1)
e1← selectUniformly(C1)
type← generatorGraphEdge(C1)
C2← findMatching(parent2, type)
if C2 is empty then

continue
e2← selectUniformly(C2)
child1← cloneUntil(parent1, e1)
child1← cloneFrom(parent2, e2)
child2← cloneUntil(parent2, e2)
child2← cloneFrom(parent1, e1)
return child1, child2

return parent1, parent2

Roulette wheel selection chooses an individual I with a probabil-
ity pI proportional to the individual’s fitness fI :

pI =
fI

∑ j f j
,

where j runs over all individuals of the current generation. The name
stems from the informal description as a roulette wheel, where the
size of each spot relates to the fitness of the individual occupying it.

k-tournament selection starts by selecting k individuals at random
with equal probability. From that group, the one with the highest
fitness is selected, i.e., letting the individuals fight in a tournament.
k-tournament selection can be implemented efficiently. while k con-
trols the selection pressure. In our approach roulette wheel selection
is used to choose one parent and k-tournament the other.

A good initial population is important to introduce enough variety
into the evolution. We create the initial population starting with
individuals that contain an empty chromosome. For each individual
we repeatedly apply the grow mutation until their chromosomes
reach a randomly chosen size. The GA converges fastest if the
average chromosome length of the initial population is comparable
to the final solution. However, as crossover and mutation change the
chromosome length, even far off initial populations converge. As
the grow mutation is very efficient, generating the chromosomes of
the initial population has a low computational cost.

Elitism is a technique that ensures that future generations contain
the best individuals of previous generations. Using elitism, the in-
dividuals with the highest fitness are copied unchanged to the new
generation. However, these individuals can still also be selected as
parents for reproduction. This ensures that the quality of the solution
never decreases and increases convergence rates as good solutions
are available for reproduction more often. However, if the popula-
tion size is too small, elitism can lead to stagnation as the GA cannot
explore different solutions. We use elitism in all our experiments.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

7. RJMCMC and SOSMC as GA

As SMC, SOSMC [RMGH15], and RJMCMC [TLL∗11] for con-
trolled procedural modeling work on individual particles or chains
that can be viewed as individual (partially finished) procedural gen-
erations, we argue that they can be implemented in a GA framework.
The following description is an outline of how to implement these
approaches, details can be found in the original papers.

SMC is arguably the simplest of the three approaches. The parti-
cles used in SMC can be seen as individuals, each starting with an
empty chromosome. SMC does not allow for interaction between
particles and thus can be described with mutations only. Ritchie
et al. sample particles based on their fitness, which we can provide
in terms of a selection method. As mutation operations, we only
require an adjusted grow mutation: It is not allowed to choose any
non-expressed child, but has to follow the order they are found
in the chromosome. Additionally, the next child is only expressed
with a probability equal to the original generation (as found in the
generator graph). If it is not expressed, it is marked as such in the
chromosome and will never be expressed. The mutation continues
until a new geometric output object is generated, showing the same
behavior as the original SMC [RMGH15].

SOSMC can be implemented the same way as SMC with the
difference that the mutation choses a random non-expressed child
and does not have to follow the order in the chromosome. This step
again continues until a new geometric output object is generated.
Note that the state of the chromosome can be seen as the structure
storing the stochastic futures [RMGH15].

RJMCMC is arguably more complex. Each production chain cor-
responds to an individual. In the default setting, no reproduction is
supported. The selection method picks each individual once, mov-
ing mutated versions of each individual to the next generation. The
diffusion operations correspond to a sequence of alter mutations fol-
lowed by a scoring function evaluation, which determines whether
the mutation is accepted. The jump moves can be viewed as muta-
tions that combine a cut with grow mutations on top of the cut gene.
Furthermore, the initialization of the newly found subtree does not
draw new random variables, but copies the ones from the cut subtree
(new values are drawn if there are not enough for copying). The
mutation is accepted based on the fitness ratio between the mutated
and original individual, and the probability of the jump move.

While the described setup models the basic reversible jump RJM-
CMC algorithm, further optimizations are required to achieve good
results [TLL∗11]. These optimizations can also be modeled in a
GA. Non-terminal selection is added by altering the probability
with which the mutations choose genes. Parallel tempering adds
a temperature to each individual. The temperature changes the ac-
ceptance probability and—implementing a reproduction operation—
exchanges the temperature of two individuals depending on their
fitness. Delayed rejection extends the jump mutation with additional
alter mutations, which allows a mutated individual to adjust before
being rejected. Finally, annealing can be added on top of all rejection
tests, slowly reducing the chance of accepting a worse individual.

8. Evaluation

To evaluate the performance of GA for controlled procedural model-
ing, we compare it to the previous state-of-the-art for a variety of
scenes, complexity levels, and types of scoring functions. As evalua-
tion platform we used an Intel Core i5-4570 @ 3.2GHz with 8GB of
memory and an NVIDIA Geforce GTX 970. For running the proce-
dural generation, we used a custom, multi-threaded, template-meta
programming C++ generator that works on abstract shapes. This
generator can be used for L-systems, shape grammars, and custom
modeling languages. To obtain fast generation speeds, the generator
graph descriptions is input to the C++ compile step, specializing the
generator for the approach at hand.

Volumetric targets are a common way to specify high-level goals
for a procedural generator. To this aim, we take any number of
volume-describing target models Ti and weights wi and w̃i as input,
voxelize them and compute the scoring function svol for a generated
model M:

svol(VM) = ∑
i

((
∑

v∈Vi

wi ·VM(v)

)
+

(
∑

v∈VM

w̃i · (1−Vi(v))

))
,

where VM is the voxelized representation of M and Vi is the vox-
elized representation of Ti. In this way, volumes that should be filled
or avoided can be specified setting positive or negative wi and w̃i.

For efficient implementation, we compute the maximum bounds
among all Ti and combine the voxels of all targets into a regular
voxel grid Vcomb, where each voxel corresponds to the sum over the
weights of all targets. During evaluation, we voxelize the generated
model, compute the overlap with Vcomb and sum up all weights. For
all voxels that fall outside the bounds of the voxel grid, we add ∑ w̃i
to the score. To perform the voxelization of each M efficiently, we
use a GPU voxelizer implemented in CUDA.

During voxelization it is easy to detect self intersections of the
model components. Thus, we take another optional weight wsel f
which is subtracted from the overall model score every time a voxel
is hit multiple times. In this way, self intersections of models can be
avoided completely by setting wsel f to a high weight, or punished
slightly in case a few self intersections are acceptable.

Images as targets are also a common way to specify high-level
goals. We take any number of floating point images Ii and camera
parameters Ci as input and compute the scoring function simg for a
generated model M:

simg(M) = ∑
i

(
∑
p∈Ii

pro jectCi(M)(p) · Ii(p)

)
,

where pro jectCi(M)(p) corresponds to projecting M using the cam-
era parameters Ci and sampling the image at position p. Regions
that are very important to be hit by the generated model should
have high positive pixel values, areas that should be avoided high
negative pixel values, and areas that do not matter zero values.

For efficient evaluation of simg, we render the generated model
into a black and white texture using OpenGL. Then, we run a com-
pute shader to multiply the rendering result with Ii and perform a
parallel reduction of the obtained values on the GPU.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

Spaceship Volume Fitness

PRJMCMC = 70, PSMC = 500, PSOSMC = 500, PGA = 150

Tree Sketch Fitness

PRJMCMC = 100, PSMC = 1000, PSOSMC = 1000, PGA = 200

Figure 7: Development of the mean fitness values and standard deviations over time for the scenes shown in Figure 1 and 3. For a simple scene
and short optimizations times as in the spaceship scenes, SOSMC and even SMC show good performance, while RJMCMC takes considerably
longer to achieve good results. In complex scenarios, like the tree sketch, SMC and SOSMC only show good performance in the beginning,
while RJMCMC slowly converges. GA in both cases shows very good early convergence rates and continues to improve over time.

The test scenes used recreate scenes from previous work [TLL∗11,
RMGH15]: a spaceship generator with models shown in Figure 3
and the generator graph in Figure 4(a); a tree generator with models
shown in Figure 1, 2, and 9(a) (using a different foliage geometry),
and generator graph in Figure 8(a), and a city generator with models
shown in Figure 9(b-d) and generator graph in Figure 8(b). The
spaceship generator is straight forward, as each new object occupies
its own space and every node generates geometry. The tree generator
is still relatively simple, however, there are many possible ways for
branches reaching the same spot. Thus a variety of solutions and
scenarios with self intersection are possible. Every node generates
geometric output. The city generator has two recursive nodes which
generate empty building lots and essentially iterate over the scene.
Only the building node is responsible for creating output geometry.
Hence, decisions made during city generation might not directly
lead to visible differences and a possibly large number of empty
lots are required to extend the city towards areas where buildings
should be set up. The targets and scoring functions for the scenes
are: a sketch for the silhouette of the generated model from a fixed
perspective in Figures 1, 2 and 9(b,c), a volumetric target to fill for
Figures 3 and 9(d), and a volumetric target to avoid for Figure 9(a).

Results obtained during optimization for the models presented in
Figure 1 and Figure 3 are shown in Figure 7. The results obtained
for the remaining test cases are shown in Figure 9. The RJMCMC
method for Metropolis procedural modeling includes the parallel
tempering, nonterminal selection and annealing optimization de-
scribed by Talton et al. [TLL∗11]. We use their proposed parallel
tempering factor that assigns a 1% acceptance probability in the
coldest chain to mutations that have a 70% chance in the hottest. As
annealing factor we use 1.1. SMC and SOSMC correspond to the
approaches described by Ritchie et al. [RMGH15]. GA corresponds
to the genetic algorithm proposed by us. In all cases, we run them
in our framework, as described in Section 7. GA uses a mutation
probability of 30%, divided into 13.5%, 13.5%, and 3.0% for grow,
cut, and alter, respectively for tree and spaceship scenes and a prob-
ability of 40%, divided into 12.5%, 10% and 18.0% respectively

Trunk:
(r,l)

Foliage

Branch:
(φ,ψ,s,l,o)

(a) Tree

City
Center

Diagonal

Straight

Building:
(φ,sx,sy,h)

(b) City

Figure 8: (a) The generator graph for the tree scene can output a
trunk with a radius and length; the trunk and branches can have
up to three sub-branches, which are each controlled by normal and
inclination angles, radial scaling, length and offset; the foliage is
always added as extension of a final branch. (b) In the city generator
only the building node directly generates visible objects; the blue
nodes recursively iterate over the space of possible building lots;
the building can be rotated, and its size and height is controllable.

for the city scenes. For tournament selection we use k = 10 and an
elitism of one fifth of the population size. The optimal fitness value
is determined by the weights used in the fitness function. Depending
on the target and the expressiveness of the generator, it might not be
reachable at all. However, the theoretical optimal fitness is 1.0 for
the tree sketch and the volumetric city and tree scenes, and 2.0 for
the spaceship and city shape scenes. We tried to tune the population
size for all approaches to achieve the best possible results and report
them as PRJMCMC, PSMC, PSOSMC, and PGA alongside the test results.
Note that SMC and SOSMC work better with larger population size
while RJMCMC works more efficiently with smaller populations;
GA usually works best with a value in between.

The spaceship and tree sketch scenes (Figure 1, 3 and 7) outline
the performance of the approaches well. For simple models like the
spaceships with volume evaluation, where every node of the genera-
tor graph leads to a geometric object, SMC and SOSMC perform

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

(a) Trees avoiding a cylinder with holes: PRJMCMC = 50, PSMC = 250, PSOSMC = 250, PGA = 200

(b) Matching the skyline of a city: PRJMCMC = 60, PSMC = 170, PSOSMC = 170, PGA = 180

(c) Matching the skyline of a city: PRJMCMC = 80, PSMC = 200, PSOSMC = 200, PGA = 200

(d) Matching the volume of a city: PRJMCMC = 100, PSMC = 800, PSOSMC = 800 PGA = 300

Figure 9: Mean fitness values and standard deviation obtained for different test scenes plotted over time. SMC and SOSMC struggle during
the beginning of the volumetric tree scene (a), as they run the relatively costly voxelization on many non-finished models. The image city scene
(b,c) is also difficult for them as the generator graph is more complex. They fail to improve after the first few generations for the volumetric
city scene (d). RJMCMC works reasonably well in all cases but shows slow convergence rates. GA in all cases shows the best convergence
behavior among all tested approaches. Note that the fitness values are not normalized and depend on the chosen weights.
c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

quite well. As they require the evaluation of the scoring function for
every step it takes some time until a first model of sufficient size is
generated (about 4s). While SMC slightly outperforms SOSMC dur-
ing this first seconds, SOSMC outperforms SMC in the longer run.
However, both of them plateau pretty soon, as they cannot ‘undo’
their initial choices. RJMCMC behavior is the opposite, since the
initial state contains already full models, which score reasonably
well. However, improving them takes a long time, falling below
SMC and SOSMC. Then again, the improvement is steady and in
the long run RJMCMC eventually outperforms SMC and SOSMC.
GA also starts with a full initial population, from which it quickly
increases the score, matching SOSMC during its best phase. How-
ever, in the long run GA keeps improving, similarly to RJMCMC.
Note that the generation of the initial population hardly costs any
time, as repeatedly calling the grow mutation has virtually no cost.
For more complex targets, like the tree sketch image evaluation,
SMC and SOSMC only show a good performance over the first
seconds. Afterwards, RJMCMC and GA significantly improve the
result, while SOSMC and SMC are stuck with the early parameter
choices. GA in this case significantly outperforms RJMCMC. The
GA solution after 3min achieves the same score as RJMCMC after
20min; SMC and SOSMC never reach this score. In this case GA
profits strongly from the fact that it can copy partial solution from
one of the three branches to the other.

The SMC and SOSMC methods have problems with complex
generators, since choices made in the early iterations reflect in
the performance during later stages. While this can be mitigated
with a larger sample size at the cost of longer calculation time for
each iteration, these complex generators usually also require a large
number of geometric objects for good solutions. Which, due to
the nature of SMC and SOSMC, require many iterations, therefore
increasing the required calculation time even further. This makes
choosing the right number of samples highly problem dependent,
and especially cumbersome when aiming to achieve the best result
within a limited computational budget.

We observe comparable behaviors in the other test cases shown
in Figure 7. The large number of volumetric scoring function eval-
uations for uncompleted models reduce the early performance of
SMC and SOSMC (a). More complex generators, like the city (b,c),
which contain nodes that do not generate any visible objects are
troublesome for the convergence of SMC and SOSMC. However,
after these issues have been overcome, SOSMC at least can catch
up with RJMCMC, before it plateaus. RJMCMC on the other hand
always slowly and steadily converges. For the volumetric city scene
(d), the weights were chosen such that wrongly placed buildings are
punished severely. This removes the advantage of the initial popula-
tion for RJMCMC and GA. But even so they manage to improve the
score, with GA significantly outperforming RJMCMC, while SMC
and SOSMC do not succeed to improve upon the solution after the
first couple of generations. GA in almost all cases seems to com-
bine the best of all worlds. Starting with a random population there
is enough information to recombine good initial solutions which
quickly increase the score. Furthermore, in contrast to SOSMC, GA
continues to improve similarly to RJMCMC. Overall GA achieved
the best results in all test cases during initial convergence and in the
long run.

9. Discussion and Future Work

We have shown that genetic algorithms can be used for controlled
procedural modeling in a variety of procedural approaches. Using
our compact tree representation to encode genomes and linking
this tree to the generator graph allows for efficient mutation and
reproduction operations while making sure that all resulting chro-
mosomes are valid. Comparing our GA to the state-of-the-art, we
found that using a GA combines the best characteristics of previous
approaches. The initial convergence is better than SOSMC and in
the long run it significantly outperforms RJMCMC, yielding the best
convergence in all stages of optimization. We attribute that to GA
being able to combine the best features from an entire population.

We also found that GA shows good performance independently
of the complexity of the used generators and scoring function. Also,
in our testcases it was rarely necessary to tune the parameters to
achieve good results, which hints at good stability of the approach.
A limitation we experienced is that by copying parts of the genome,
similar features can be duplicated in the model, e.g., the remains
of a heart shape are visible in the left branch of the GA result in
Figure 1. Furthermore, our implementation of elitism is somewhat
susceptible to ‘sample impoverishment’, leading to almost identical
copies of the same individual in the elite population, but we did not
notice a diminished performance caused by this.

In the future we will increase the efficiency of our approach fur-
ther, by using a GPU-based generator. This will also increase the ef-
ficiency of the proposed scoring function evaluations which already
use the GPU. Furthermore, we believe that combining SOSMC,
RJMCMC, and GA and automatically choosing the best approach
might even increase convergence further, i.e., using SOSMC to cre-
ate an initial population, switching to GA after a few iterations and
then switching to RJMCMC in the long run. Considering our de-
scription of SOSMC and RJMCMC within our GA framework this
seems to be possible. Finally, the major challenge we see is tackling
full inverse procedural modeling, where the generator consists of
the entire set of modeling operations and the goal is given by a fully
detailed object or a scan of a real world object. We believe genetic
algorithms have the potential to help make full inverse procedural
modeling possible.

Acknowledgments

We would like to thank Martin Kenzel for generating the final render-
ings for the paper. This research was supported by the Max Planck
Center for Visual Computing and Communication.

Our approach can be downloaded from https://github.
com/crest01/ShapeGenetics.

References
[BDK∗16] BOECHAT P., DOKTER M., KENZEL M., SEIDEL H.-P.,

SCHMALSTIEG D., STEINBERGER M.: Representing and scheduling
procedural generation using operator graphs. ACM Trans. Graph. 35, 6
(Nov. 2016), 183:1–183:12. doi:10.1145/2980179.2980227. 2

[Boe95] BOERS E. J. W.: Using L-Systems as graph grammar: G2L-
Systems, 1995. 3

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/crest01/ShapeGenetics
https://github.com/crest01/ShapeGenetics
http://dx.doi.org/10.1145/2980179.2980227


Karl Haubenwallner, Hans-Peter Seidel and Markus Steinberger / ShapeGenetics: Using Genetic Algorithms for Procedural Modeling

[BT96] BLICKLE T., THIELE L.: A Comparison of Selection Schemes
Used in Evolutionary Algorithms. Evolutionary Computation 4, 4 (1996),
361–394. doi:10.1162/evco.1996.4.4.361. 6

[BvMM11] BENEŠ B., ŠTAVA O., MĚCH R., MILLER G.: Guided pro-
cedural modeling. Computer Graphics Forum 30, 2 (2011), 325–334.
doi:10.1111/j.1467-8659.2011.01886.x. 3

[FP98] FUNES P., POLLACK J.: Evolutionary body building: Adaptive
physical designs for robots. Artif. Life 4, 4 (Oct. 1998), 337–357. doi:
10.1162/106454698568639. 3

[Hav05] HAVEMANN S.: Generative mesh modeling. PhD thesis, Univer-
sity of Braunschweig-Institute of Technology, 2005. 2, 3

[KK11] KRECKLAU L., KOBBELT L.: Procedural modeling of intercon-
nected structures. Computer Graphics Forum 30, 2 (2011), 335–344.
doi:10.1111/j.1467-8659.2011.01864.x. 2

[LD98] LINTERMANN B., DEUSSEN O.: A modelling method and user
interface for creating plants. Computer Graphics Forum 17, 1 (1998),
73–82. 2

[Lin68] LINDENMAYER A.: Mathematical models for cellular interactions
in development ii. simple and branching filaments with two-sided inputs.
Journal of theoretical biology 18, 3 (1968), 300–315. 2

[Mag09] MAGDICS M.: Real-time generation of l-system scene models for
rendering and interaction. In Proceedings of the 25th Spring Conference
on Computer Graphics (New York, NY, USA, 2009), SCCG ’09, ACM,
pp. 67–74. doi:10.1145/1980462.1980478. 2

[MBG∗12] MARVIE J.-E., BURON C., GAUTRON P., HIRTZLIN P., SOU-
RIMANT G.: GPU Shape Grammars. Computer Graphics Forum (2012).
doi:10.1111/j.1467-8659.2012.03201.x. 2

[MLCB10] MARTIN A., LIM A., COLTON S., BROWNE C.: Evolving
3D Buildings for the Prototype Video Game Subversion. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 111–120. URL:
http://dx.doi.org/10.1007/978-3-642-12239-2_12,
doi:10.1007/978-3-642-12239-2_12. 3

[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models of plants in-
teracting with their environment. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 397–410. doi:
10.1145/237170.237279. 2

[MSL∗11] MERRELL P., SCHKUFZA E., LI Z., AGRAWALA M.,
KOLTUN V.: Interactive furniture layout using interior design guide-
lines. ACM Trans. Graph. 30, 4 (July 2011), 87:1–87:10. doi:
10.1145/2010324.1964982. 3

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. ACM Trans. Graph.
25, 3 (July 2006), 614–623. doi:10.1145/1141911.1141931. 2

[Och98] OCHOA G.: On genetic algorithms and lindenmayer sys-
tems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 335–
344. URL: http://dx.doi.org/10.1007/BFb0056876, doi:
10.1007/BFb0056876. 3

[OOI05] OKABE M., OWADA S., IGARASH T.: Interactive design of
botanical trees using freehand sketches and example-based editing. Com-
puter Graphics Forum 24, 3 (2005), 487–496. doi:10.1111/j.
1467-8659.2005.00874.x. 2

[OSM∗09] O’NEILL M., SWAFFORD J. M., MCDERMOTT J., BYRNE
J., BRABAZON A., SHOTTON E., MCNALLY C., HEMBERG M.: Shape
grammars and grammatical evolution for evolutionary design. In Pro-
ceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation (2009), GECCO ’09, pp. 1035–1042. 3

[Pat12] PATOW G.: User-friendly graph editing for procedural modeling
of buildings. IEEE Computer Graphics and Applications 32, 2 (March
2012), 66–75. doi:10.1109/MCG.2010.104. 3

[PHL∗09] PALUBICKI W., HOREL K., LONGAY S., RUNIONS A., LANE
B., MĚCH R., PRUSINKIEWICZ P.: Self-organizing tree models for image
synthesis. In ACM SIGGRAPH 2009 Papers (New York, NY, USA, 2009),
SIGGRAPH ’09, ACM, pp. 58:1–58:10. doi:10.1145/1576246.
1531364. 2

[PJ08] PILAT M. L., JACOB C.: Creature academy: A system for virtual
creature evolution. In 2008 IEEE Congress on Evolutionary Computa-
tion (IEEE World Congress on Computational Intelligence) (June 2008),
pp. 3289–3297. doi:10.1109/CEC.2008.4631243. 3

[PL91] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty
of plants (the virtual laboratory). 2

[PSK∗12] PIRK S., STAVA O., KRATT J., SAID M. A. M., NEUBERT
B., MĚCH R., BENES B., DEUSSEN O.: Plastic trees: Interactive self-
adapting botanical tree models. ACM Trans. Graph. 31, 4 (July 2012),
50:1–50:10. doi:10.1145/2185520.2185546. 1, 2

[RMGH15] RITCHIE D., MILDENHALL B., GOODMAN N. D., HANRA-
HAN P.: Controlling procedural modeling programs with stochastically-
ordered sequential monte carlo. ACM Trans. Graph. 34, 4 (July 2015),
105:1–105:11. doi:10.1145/2766895. 2, 3, 7, 8

[Sim91] SIMS K.: Artificial evolution for computer graphics. SIGGRAPH
Comput. Graph. 25, 4 (July 1991), 319–328. doi:10.1145/127719.
122752. 3

[Sim94] SIMS K.: Evolving virtual creatures. In Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1994), SIGGRAPH ’94, ACM, pp. 15–22. doi:
10.1145/192161.192167. 3, 4

[Sip06] SIPSER M.: Introduction to the Theory of Computation, vol. 2.
Thomson Course Technology Boston, 2006. 4

[SKK∗14a] STEINBERGER M., KENZEL M., KAINZ B., MÜLLER J.,
PETER W., SCHMALSTIEG D.: Parallel generation of architecture on the
GPU. Computer Graphics Forum 33, 2 (2014), 73–82. doi:10.1111/
cgf.12312. 2

[SKK∗14b] STEINBERGER M., KENZEL M., KAINZ B., WONKA P.,
SCHMALSTIEG D.: On-the-fly generation and rendering of infinite cities
on the GPU. Computer Graphics Forum 33, 2 (2014), 105–114. doi:
10.1111/cgf.12315. 2

[SM15] SCHWARZ M., MÜLLER P.: Advanced procedural modeling
of architecture. ACM Trans. Graph. 34, 4 (July 2015), 107:1–107:12.
doi:10.1145/2766956. 1, 2

[SPK∗14] STAVA O., PIRK S., KRATT J., CHEN B., MÄŻCH R.,
DEUSSEN O., BENES B.: Inverse procedural modelling of trees. Com-
puter Graphics Forum 33, 6 (2014), 118–131. doi:10.1111/cgf.
12282. 2, 3

[Sti75] STINY G. N.: Pictorial and Formal Aspects of Shape and Shape
Grammars and Aesthetic Systems. PhD thesis, 1975. 2

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH R.,
KOLTUN V.: Metropolis procedural modeling. ACM Trans. Graph. 30, 2
(Apr. 2011), 11:1–11:14. doi:10.1145/1944846.1944851. 2, 7,
8

[WA85] WADGE W. W., ASHCROFT E. A.: LUCID, the Dataflow Pro-
gramming Language. Academic Press Professional, Inc., San Diego, CA,
USA, 1985. 3

[WP95] WEBER J., PENN J.: Creation and rendering of realistic trees. In
Proceedings of the 22Nd Annual Conference on Computer Graphics and
Interactive Techniques (New York, NY, USA, 1995), SIGGRAPH ’95,
ACM, pp. 119–128. doi:10.1145/218380.218427. 2

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY W.: In-
stant architecture. ACM Trans. Graph. 22, 3 (July 2003), 669–677.
doi:10.1145/882262.882324. 2

[XZCOC12] XU K., ZHANG H., COHEN-OR D., CHEN B.: Fit and
diverse: Set evolution for inspiring 3d shape galleries. ACM Trans. Graph.
31, 4 (July 2012), 57:1–57:10. doi:10.1145/2185520.2185553.
3

[YYW∗12] YEH Y.-T., YANG L., WATSON M., GOODMAN N. D., HAN-
RAHAN P.: Synthesizing open worlds with constraints using locally an-
nealed reversible jump mcmc. ACM Trans. Graph. 31, 4 (July 2012),
56:1–56:11. doi:10.1145/2185520.2185552. 2, 3

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1111/j.1467-8659.2011.01886.x
http://dx.doi.org/10.1162/106454698568639
http://dx.doi.org/10.1162/106454698568639
http://dx.doi.org/10.1111/j.1467-8659.2011.01864.x
http://dx.doi.org/10.1145/1980462.1980478
http://dx.doi.org/10.1111/j.1467-8659.2012.03201.x
http://dx.doi.org/10.1007/978-3-642-12239-2_12
http://dx.doi.org/10.1007/978-3-642-12239-2_12
http://dx.doi.org/10.1145/237170.237279
http://dx.doi.org/10.1145/237170.237279
http://dx.doi.org/10.1145/2010324.1964982
http://dx.doi.org/10.1145/2010324.1964982
http://dx.doi.org/10.1145/1141911.1141931
http://dx.doi.org/10.1007/BFb0056876
http://dx.doi.org/10.1007/BFb0056876
http://dx.doi.org/10.1007/BFb0056876
http://dx.doi.org/10.1111/j.1467-8659.2005.00874.x
http://dx.doi.org/10.1111/j.1467-8659.2005.00874.x
http://dx.doi.org/10.1109/MCG.2010.104
http://dx.doi.org/10.1145/1576246.1531364
http://dx.doi.org/10.1145/1576246.1531364
http://dx.doi.org/10.1109/CEC.2008.4631243
http://dx.doi.org/10.1145/2185520.2185546
http://dx.doi.org/10.1145/2766895
http://dx.doi.org/10.1145/127719.122752
http://dx.doi.org/10.1145/127719.122752
http://dx.doi.org/10.1145/192161.192167
http://dx.doi.org/10.1145/192161.192167
http://dx.doi.org/10.1111/cgf.12312
http://dx.doi.org/10.1111/cgf.12312
http://dx.doi.org/10.1111/cgf.12315
http://dx.doi.org/10.1111/cgf.12315
http://dx.doi.org/10.1145/2766956
http://dx.doi.org/10.1111/cgf.12282
http://dx.doi.org/10.1111/cgf.12282
http://dx.doi.org/10.1145/1944846.1944851
http://dx.doi.org/10.1145/218380.218427
http://dx.doi.org/10.1145/882262.882324
http://dx.doi.org/10.1145/2185520.2185553
http://dx.doi.org/10.1145/2185520.2185552

