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Abstract
In this paper, we present the design and implementation of a dynamic window management technique that changes
the perception of windows as fixed-sized rectangles. The primary goal of self-organizing windows is to automati-
cally display the most relevant information for a user’s current activity, which removes the burden of organizing
and arranging windows from the user. We analyze the image-based representation of each window and identify
coherent pieces of information. The windows are then automatically moved, scaled and composed in a content-
aware manner to fit the most relevant information into the limited area of the screen. During the design process,
we consider findings from previous experiments and show how users can benefit from our system. We also describe
how the immense processing power of current graphics processing units can be exploited to build an interactive
system that finds an optimal solution within the complex design space of all possible window transformations in
real time.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Windowing systems

1. Introduction

During the last years the number of windows present on
average computer desktop has dramatically increased. The
world wide web offers uncountable pieces of knowledge,
people are living their lives connected with others using so-
cial networks and instant message services and current com-
puter hardware is able to run concurrent multiple applica-
tions, supporting more windows on larger screens. Current
computer users keep an average of ten ”working spheres”
concurrently open [GM04], each of which may require inter-
actions with multiple applications. Unsurprisingly, as users
tend to have many windows open, they also invest a sig-
nificant amount of time in organizing the window layout,
resizing the windows, or altering the window stacking or-
der [HSM∗04,TCH∗09]. The time spent on these operations
can be classified as overhead time [HC86], which would be
zero in an ideal system.

In this work, we present the design and implementation of
an automatic window management technique that uses the
available display space to reduce overhead time more effi-
ciently than previous techniques. To achieve this result, we
advance from seeing windows as rigid, fixed-sized rectan-
gles with no information about their content to treating them
as elastic borders enclosing multiple pieces of information

Figure 1: Our technique relocates windows, non-linearly
warps their content, and employs see-through compositing
to maximize the amount of important information displayed
on the screen. Non-linear transformations are used to show
content that would otherwise require twice the display size.

with varied importance. We analyze each window’s content,
define the coherent pieces of information with their impor-
tance, apply non-linear transformations, and cut away unim-
portant window regions to squeeze more important content
into the limited sized display than traditional window man-
agers. To achieve these results, we draw from the fields of
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focus-and-context rendering and content-aware image resiz-
ing as well as from previous analyses of window manage-
ment techniques. We formulate window rendering as an op-
timization problem, which we then solve with real-time up-
date rates building on the capabilities of the latest Graph-
ics Processing Units (GPUs). In summary, our contributions
consist of the following:
• analyzing windows for coherent pieces of information to

define content-aware non-linear transformations on them;
• combining non-linear window transformations, available

display space and high-level considerations, such as the
user’s spatial memory in an optimization problem for pre-
senting windows;
• solving this optimization problem with real-time frame

rates using the latest GPU technology; and
• integrating the entire technique into an established win-

dowing system.
Finally, we present three application scenarios to demon-
strate the utility of the presented technique and show the
results of an exploratory user study.

2. Related Work

Researchers have analyzed window management operations
for more than a quarter of a century, and these studies should
be considered when designing new window management
techniques. In summary, the following findings are most rel-
evant for our work.

F1 Window switching occurs often [Gay86, HSM∗04].
F2 Users tend to have many windows open, and their num-

ber increases with the display size [HSM∗04].
F3 Users rely heavily on mouse-based window-switching

methods [TCH∗09] (e.g., users consider alt+tab for ex-
plicit window switching to be tedious [Gru01]).

F4 A user’s spatial memory is important for retrieving in-
formation [RCL∗98, RvDR∗00].

F5 Under certain conditions, users do not consider auto-
matic moving and resizing of windows to be distract-
ing [MA99].

We address these findings in our technique’s design process.

2.1. Window Management Techniques

One way of supporting the user in managing windows is to
automatically arrange them spatially, reducing the overlap
between windows [KS97, BF00, BNB01]. Instead of alter-
ing window locations to show more content, windows can
be made (partially) transparent to enable the user to iden-
tify the content underneath the foreground windows [IF04].
By analyzing the window content, window relocation and
window transparency can be combined [WSGS11]. Whereas
[WSGS11] formulate the process of finding optimal win-
dow positions as a cost function, we go one step further and
identify connected pieces of information to incorporate non-
linear window transformations. Furthermore, we solve the

problem with real-time frame rates, which is essential for a
windowing system.

Another way of showing more windows concurrently on
limited display space is shrinking. Shrinking methods in-
clude the ’traditional’ resizing, cropping, and uniform scal-
ing [MA00]. Another related technique is the extraction of
user-defined regions [HS04, TMC04, MCRT06, SCPR06].
These extraction methods require manual activity by the
user to define what is important. Using Metisse [CR05],
these techniques could be combined. If a description of the
user interface elements is available, an optimization problem
can be constructed to generate a layout well suited for the
user [GW04]. However, without the knowledge about what
is important, automatic techniques cannot guarantee that rel-
evant information is displayed when windows are scaled or
regions are extracted. We automatically identify important
window regions and apply non-linear transformations so that
important information is shown with minimal distortions and
the size of unimportant areas is greatly reduced.

Virtual Desktops or rooms [HC86] and task management
systems [RvDR∗00, RHC∗04] reduce the amount of infor-
mation displayed simultaneously by showing only those
windows needed for a single task. Content analysis allows
automatic task groupings [OSTS06, RC07], which increases
the power of task management systems. However, single
tasks often involve multiple application windows. Addition-
ally, a binary assignment of a single task is often impossi-
ble [BSW08], which further increases the number of open
windows. Thus, we see our technique not as an alternative to
these approaches but rather as a complement.

2.2. Focus-and-Context Techniques

Non-linear transformations are often applied by distortion-
oriented focus-and-context techniques to resolve the prob-
lem of too much information in too little space. These tech-
niques include the perspective wall [MRC91], the document
lens [RM93], graphical fisheye views [SB94], and melange
[EHRF08]. Another simple but powerful distortion tech-
nique can be described by the metaphor of ’stretching the
rubber sheet’ [SSTR93]. Using this technique, large 2-D lay-
outs can be distorted by adjusting the location of a few hor-
izontal and vertical handles. We employ a similar technique
to distort windows. [LA94] and [CKB09] review different
kinds of focus-and-context techniques.

Some window management approaches also fall into the
category of focus-and-context techniques. For example, the
transformation used by display bubbles [CG06] could be
seen as a fisheye transformation that distorts the outer re-
gions of the desktop to fit into a constrained space. Content
aware layout [IF07] non-linearly distorts windows exceed-
ing the display area along the x-axis to fit on the screen.
However, both techniques distort windows without consid-
ering their content.
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2.3. Content-aware image resizing

If images or videos are presented in sizes or aspect ratios
that differ from their original values, a content analysis can
help preserve the most relevant information in original size.
This analysis permits to either remove or add single seams
[AS07], define a constraint transformation for each pixel
[WGCO07], combine scaling and stretching [WTSL08], and
even combine multiple operators [RSA09]. Even though we
aim to fit windows into a constraint space, we cannot apply
these approaches to window management directly, because
we do not have a fixed frame in which to fit in a window. In-
stead, we must consider the position and scaling of all win-
dows while we at the same time determine which content of
each window to display.

3. Self-Organizing Windows

On limited sized displays, users spend a significant amount
of time managing (i.e., moving, switching and resizing) win-
dows to view or access important pieces of information (F1).
When increasing the display space, users keep more win-
dows open (F2). Thus, the overhead of window management
cannot be resolved with increasing display space. We there-
fore need to carefully decide how much display space to as-
sign to each piece of information.

This is only one of the goals of self-organizing windows.
There are other constraints that must be considered, such
as tearing windows apart wildly, transformed text becom-
ing unreadable, and windows jumping on the screen. Self-
organizing windows transform windows so the most impor-
tant window content for the user’s current activity is dis-
played at its full size. Related pieces of information in other
windows are visible and accessible. Secondary windows
(e.g. instant messengers or music players) are significantly
shrunken in size but still identifiably rendered on-screen,
such that the user can efficiently switch to them (F3). In ad-
dition, it should be clear which content belongs to which
window, the user should be able to intuit window location,
and the overall layout should quickly stabilize.

3.1. Coherent Pieces of Information

Before we can define a method of arranging and transform-
ing windows to present the user with the most important
information, we must identify important pieces of informa-
tion within windows and define each piece’s importance for
the user’s current activity. Identifying important content is
a common task in content aware image resizing and media
retargeting [AS07, WGCO07, WTSL08]. Often, a model of
saliency-based visual attention [IKN98] is used to find re-
gions which are important. Building on saliency-based vi-
sual attention, importance maps have recently been intro-
duced as low-level description of importance in windowing
systems [WSGS11]. We compute this importance map for
each window and threshold it at a low importance value. We

assume that connected regions with importance above this
threshold are coherent pieces of information. We can then
assign an importance value to these pieces of information by
computing the average importance of each piece, as shown
in Figure 2.

It is difficult to define the importance of each piece of
information for the user’s current activity because the sys-
tem cannot know what the user is exactly doing at any given
point in time (e.g., which paragraph of text the user is read-
ing, at which image the user is currently looking, or whom
the user wants to contact for a coffee date). However, we can
infer the importance of information pieces within windows
based on the low-level importance and deduce a window or-
dering based on usage, while allowing the user to easily in-
fluence this ordering. In our current system, we use the win-
dow stacking order. Thus, all relevant pieces of information
from the active window are presented to the user, recently
used windows get a high priority, and the system is intuitive.
To allow more control, the user can exclude single windows
from the self-organizing process.

Figure 2: We segment windows into coherent pieces of in-
formation (the areas surrounded by a color) by thresholding
the window’s importance map [WSGS11]. Calculating the
marginalized window importance (red and blue graphs) and
thresholding it defines a rectangular grid on top of the win-
dow (short line segments with arrows) with which we distort
the window. The grid lines normally coincide with region
outlines.

3.2. Window Parameterization

Multiple transformations, such as distortion-oriented, focus-
and-context techniques [LA94, CKB09] or an image resiz-
ing operator [RSA09] can be used as a basis for mapping a
single window onto a display satisfying the previously men-
tioned requirements. After testing multiple options, we de-
cided to apply a form of orthogonal stretching [SSTR93],
because it preserves the overall shape of the windows, sym-
metries, and the readability of text, cf. Figure 4. The trans-
formation can be described by a few parameters (handles),

c© 2011 The Author(s)
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which allow an efficient and parallel computable solution to
the optimization problem. The individual handle locations
h along X and Y are given by Hx = [hx,0,hx,1, · · ·hx,n] and
Hy = [hy,0,hy,1, · · ·hy,n] respectively. We choose the handle
locations according to the previously mentioned definition
of coherent pieces of information. Instead of segmenting
these pieces in 2-D, however, we compute and threshold the
marginalized window importance in the X and Y dimensions
separately, a process that assigns the handle locations close
to the boundaries of coherent pieces of information (see Fig-
ure 2). The transformation for displaying a window can be
defined by mapping the handles to new locations H̃x and
H̃y on the display. Given this setup, the areas between two
adjacent handles (covering single coherent pieces of infor-
mation) scale uniformly along each dimension.

The handles also span a rectangular grid over each win-
dow. The grid-points define a set of vertices, vi,j ∈ V with
vi,j = (hx,i,hy, j), with which we define different penalties in
the optimization problem. In this setup, orthogonal stretch-
ing is similar to feature aware texturing [GSCO06] and opti-
mized scale-and-stretch [WTSL08], with the restriction that
the mesh remains rectangular.

3.3. Optimization Problem

Based on the window ordering, we can setup a greedy opti-
mization problem. According to the window stacking order
(starting with the top level window), we attempt to find the
optimal handle locations, H̃x and H̃y, for one window at a
time. The handle locations are optimal if they show the most
important window content and neither harm the user’s spa-
tial memory (F4) nor introduce too much on-screen motion
(F5). To weigh all these consideration, we formulate a cost
function in which each consideration is represented by a sin-
gle term.

3.3.1. Visibility

As we consider windows consecutively, we track the unused
screen pixels in a display-sized availability map, Ad . We ini-
tially set all the pixels to free, indicated by a value of 0, while
we define used pixel by 1. In case of a multi monitor setup,
placing important window content at the boundaries between
monitors should be avoided [Gru01]. To include this finding
in the optimization problem, we set a one pixel line at these
boundaries to unusable. If higher prioritized windows use
pixels, the following windows will avoid these pixels and
squeeze their most relevant content into the free areas. After
a single window mapping has been determined, the pixels
covered by this window are marked as used. Because not
all pixels contained in windows hold important information
(some represent background areas), we do not mark pixels
with importance below the threshold. If a following window
places content in a background area, the background is cut
away from the higher priority window, which enables the
user to see through the window.

To formalize the demand for showing each window’s most
important content, we penalize placing important content on
unusable pixels:

Po = ∑
x∈display

Ad(x) · Iw,H̃x,H̃y
(x), (1)

where Iw,H̃x,H̃y
represents the window importance mapped to

the display according to the transformed handles H̃x and H̃y.
Essentially Po is the sum of the importance that is not shown
due to the unavailability of display pixels. To prevent plac-
ing window content off-screen, we penalize handle positions
outside the display boundaries by multiplying their distance
to the boundary by a high value and adding this value to Po.

3.3.2. Content-aware Scaling

Changing the distance between handles creates non-linear
window transformations that shrink or enlarge certain areas.
While transformations to unimportant areas are generally ac-
ceptable, distorting important regions should be avoided. To
formalize this requirement, we penalize scaling along each
dimension according to the importance of each area. The
scaling penalty along one dimension, e.g., X , is given by

Ps,x = ∑
i<|Hx|

Scl(h̃x,i, h̃x,i+1) ·∑
hx,i<x<hx,i+1
hy,0<y<hy,n

Iw(x,y), (2)

where the sum over Iw(x,y) yields the importance of the area
limited by the handle locations hx,i and hx,(i+1) and Scl de-
scribes the scaling applied to this area:

Scl(h̃i, h̃ j) = max

(
h̃ j− h̃i

h j−hi
,

h j−hi

h̃ j− h̃i

)
−1.

Scl(h̃i, h̃ j) treats shrinking and enlarging symmetrically.

3.3.3. Distance and Motion

If the user interacts with windows (e.g., alters the content
of windows, or moves windows) the optimal window layout
may severely and abruptly change. To reduce the influence
on the user’s spatial memory (F4) and keep on-screen mo-
tion low (F5), we penalize the deviation of every vertex ṽ
from its original location v and its previous location ṽp:

Pp =
1
|V| ∑

v∈V
|ṽ−v|2 Pm =

1
|V| ∑

v∈V
|ṽ− ṽp|2 (3)

3.3.4. Combined Cost Function

Combining all the previously mentioned penalties, Equation
(1 - 3), gives a common cost function:

C(H̃x,H̃y) = αoPo +αs(Ps,x +Ps,y)+αpPp +αmPm (4)

The set of handles H̃x and H̃y minimizing the cost function
form the optimal mapping function for the current window.

c© 2011 The Author(s)
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The α values control the trade-off between the different con-
straints. For example, increasing αo allows less overlap be-
tween windows by accepting more distortions and more de-
viation from the original window location.

4. Implementation

Even though we employ a greedy strategy, finding an opti-
mal mapping for a window according to Equation (4) is a
complex task. Working with standard desktop applications,
the immense processing power of GPUs remains mostly un-
used. To harness this power, we employ a combination of
GLSL shaders for graphics related tasks and use the Open
Computing Language (OpenCL) for solving the optimiza-
tion problem. Furthermore, using a compositing window
manager, every window’s content is ready for use on the
GPU. In the following section, we describe the stages of
our technique as shown in Figure 3. We first describe the
computation of every window’s importance and then discuss
our gradient descent approach to finding the minimum of
the cost function and why the intermediate results are well
suited to be shown to the user. Finally, we give some imple-
mentation details and measurements describing the system
performance.

4.1. Importance Analysis

To segment every window into coherent pieces of informa-
tion and define the handles, XH,O and YH,O, we compute
and store one importance map per window. We also keep the
marginalized importance and the sum of the importance be-
tween two handles in GPU memory, reducing the number of
operations required during the gradient descent stage.

4.1.1. Incremental Importance

We compute the importance map, Iw, from each window
texture using a model of saliency-based visual attention
[IKN98]. In standard desktop applications, such as word
processors, web-clients or image processors, only parts of
these windows are usually subject to changes. To benefit
from this observation, we perform importance updates only
for the areas that changed compared to the last frame. To
calculate the importance, we compute an image pyramid us-
ing GLSL shaders, according to the saliency model given
in [IKN98]. We deduce the updated region by circumscrib-
ing a rectangle around all changed areas and increasing its
size while taking the pyramid depth and filter extent into ac-
count. According to our experiments, for an average desktop
setup with ten windows or more, the time spent perform-
ing these saliency computations is reduced by approximately
95%, if saliency updates are computed for changed areas
only.

4.1.2. Transformation Handles

To determine the handle locations, Hx and Hy, we use the
marginal importance of every window as previously de-

scribed. To compute the marginal importance for each di-
mension, we use an OpenCL kernel to compute the sum of
the importance values along the codimension. We again up-
date these values only for the areas that have been altered. To
define the homogeneous regions of information along every
dimension, we normalize the marginal importance with the
window importance average and threshold it with the empir-
ically determined value 0.2, cf. Figure 2. According to our
experiments, a small variation of the threshold value does
not have any influence on the end result.

If the displayed content changes, the importance is al-
tered, and the handle locations Hx and Hy also change. Be-
cause the window may already be distorted, we transform the
changed handle locations according to the old transformed
handle locations H̃x and H̃y, and smoothly interpolate from
the old handle locations to the new ones.

4.2. Optimization

The cost function given by Equation (4) must be minimized,
to determine the transformation applied to each window. Be-
cause this cost function is based on the irregular availability
map, Ad , and the window’s importance, Iw, its shape can be
complex with a large number of local minima. To build an
interactive system, we intend not to find the global optimum
of the cost function in every frame, but rather to locally im-
prove the mapping of the last frame. This also reduces the in-
fluence on the user’s spatial memory and guarantees smooth
movements during system interaction.

4.2.1. Gradient Descent

We use a gradient descent-based optimizer to implement
the search for the optimal window transformation. We work
on all handles in parallel to evaluate the gradient direction.
According to the OpenCL definition, we use one block of
256 threads to compute the influence of one grid cell on
its surrounding handles. This work distribution results in
(|Hx|−1) · (|Hy|−1) blocks of 256 threads being processed
in parallel, which is normally sufficient to fully utilize stan-
dard consumer graphics cards. Each thread draws samples
from Ad and Iw to approximate the gradient of Equation (1)
using central differences. A parallel reduction in local shared
memory makes this part of the gradient available for all
threads. The first thread of every block analytically com-
putes the other parts of the gradient and stores the influence
of its block on the entire gradient computation using atomic
operations.

As a starting point for the gradient descent, we use a lo-
cation close to the transformation of the previous frame. We
therefore evaluate the cost function for 20 randomly offset
transformations in every frame, use a parallel reduction to
find the one with the minimal cost, and use this transforma-
tion as a starting point for the search. The deviation from the

c© 2011 The Author(s)
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Figure 3: An overview of the pipeline run through by every window (blue boxes correspond to OpenCL kernel launches, and
orange boxes illustrate memory objects). (1) The importance map is calculated from the window texture using a filter pyramid.
(2) The marginalized importance defines the handle locations. (3) The randomly offset handle locations are compared, and
the best is used as the starting point for a fixed number of gradient descent steps (4), which advance the current window
transformation closer to the optimum. (5) Post filtering keeps the transition toward the optimum smooth. (6) The output texture
and the availability map Ad are updated according to the current handles.

previous transformation is selected using a Gaussian distri-
bution with a standard deviation corresponding to approxi-
mately 100 pixels. Although this strategy seems rather lim-
ited, the random initialization in every frame helps overcome
the local minima.

4.2.2. Post Filtering

To achieve faster convergence speeds, we employ a normal-
ized gradient descent with a momentum term, a large step
length, and exponential decay on the step length. Although
gradient descent is computationally inexpensive, finding the
exact location of a minimum can take many steps (too many
for an interactive system, eventually). Thus, we have cho-
sen a different approach to this problem. We do not try to
find the minimum in every frame and present intermediate
results to the user instead. As the gradient moves from the
vicinity of the previous transformation to a better one, this
process morphs the window from one transformation to the
optimum. Because the trail of the gradient is generally to
rough for the user, i.e., the windows would jitter too much,
we introduce a post filter. This filter simply mixes the pre-
vious transformation with the transformation given by the
current gradient descent location:

Ht+1 = β ·Ht +(1−β) ·Hgradient,

where Ht and Ht+1 describe the handle locations of the pre-
vious and current frame and Hgradient corresponds to the
current location of the gradient search. We choose a β value
around 0.9, yielding an infinite impulse response filter that
generates smooth trajectories for the transformation handles.
This filter helps to hide the jittery movement of the gradient
and removes jumps due to the random initializations. Using
this approach, we present the user with an image every 20
gradient descent steps with real-time update rates (see Sec-
tion 4.5).

4.3. Compositing

After finding the window transformation, we use an OpenCL
kernel to render the window into a common desktop-sized
texture and update the availability map Ad . We do not use
OpenGL for this task, because we must simultaneously read
from and write to Ad , to evaluate if a pixel is still free and
mark it as used. To visually aid the separation between dif-
ferent windows, we add boundary shadows at cut-away ar-
eas, similar to [WSGS11] (see Figures 4 and 6). After ren-
dering the last window to the common texture, we render
this texture with a screen sized quad using OpenGL.

4.4. Input Redirection

Because current windowing systems do not support distorted
windows or cut-away areas within windows, we must mod-
ify the mouse input so it reaches the right window and
the correct location within the window. We accomplish this
modification using an input redirection map built during the
compositing stage that holds information about the window
displayed at each pixel. Every entry in this map stores three
values: an identifier of the window and the two coordinates
describing the pixel’s location in the undistorted window.
Whenever the mouse is moved, we query this map to deter-
mine the active window and the target position for the mouse
pointer redirection.

4.5. Implementation Details and Performance

Our system is implemented as a plugin for the OpenGL-
based compositing window manager Compiz that builds on
the X Window System. The CPU portion of the implementa-
tion is written in C/C++ and primarily issues OpenCL kernel
calls. OpenGL is only used for computing the importance
map and displaying the final composited texture to the user.

c© 2011 The Author(s)
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Figure 4: A user changes the focus from a development environment to a web browser. The web browser is thus assigned the
highest priority and its size is restored. The development environment’s size is adjusted to better fit the available space. See-
through compositing using cut-aways allows the lower-prioritized applications to shine through the top-level windows, making
the instant messenger visible and accessible here.

To assess the system’s performance, we measured the time
spent on every stage of the system for windows of different
sizes, as shown in Table 1. On an Intel Quad-Core 2.80 Ghz
CPU with NVIDIA GeForce GTX 480, the system handles
15 windows of variable size with an average frame rate of 50
fps at a display resolution of 1280×1024,

Imp. Seg. GD Comp. Sum
256x256 2216 897 741 803 6250
512x512 5080 1013 1512 1250 11235
1024x768 13700 1035 3079 1540 23512

Table 1: The performance measure (in µs) include the gener-
ation of a full window importance map (Imp.), window seg-
mentation (Seg.), 20 gradient descent steps (GD), window
compositing (Comp.), and all other overhead. Note that the
generation of the importance map is rarely run fully, but is
partially updated for changed areas.

5. Usage Scenarios

Every task involving more than a single window requires the
user to switch from one window to another. Our system can
thus benefit users in many scenarios. We begin with a general
case showing how self-organizing windows are transformed
if the active window is altered. We then show how the user
can benefit from the distance and motion penalties to bring
related information spatially together on the screen and how
window switching operations can be performed more effi-
ciently with our technique.

5.1. Focus-and-Context

On a small screen self-organizing windows are the most ben-
eficial when they reveal otherwise occluded window content.
In the example in Figure 4, a user works with a development

environment while the system scales and relocates periph-
eral windows, such as the two web browser applications and
the music player to better fit into the available space. The
otherwise hidden instant messenger application is presented
to the user in an empty area of the development application.
Due to self-organizing windows, at least small portions of
the most important windows are presented to the user, which
enable the user to switch to other application windows ef-
ficiently. In this example the user starts interacting with the
web-browser, which triggers a dynamic adjustment of the
presented content, greatly reducing the development appli-
cation in size.

5.2. Combining Related Information

Because our system attempts to show as many important re-
gions as possible and also considers the location of the in-
formation, the user can change the layout to bring related
pieces of information together. This ability helps the user
compare similar pieces of information, find matches in the
data, and generate more pleasant layouts. In Figure 5, a user
has placed images of replicas of Statue of Liberty replicas
next to an image of the original. The system automatically
stretches the unimportant areas of the non-focus window to
show the text for the image of the original, which would oth-
erwise remain hidden.

5.3. Pull-Through Window Switching

Empty space in the focus window can be used to display
downsized versions of other full-screen windows, as shown
in Figure 6. Due to content-aware scaling, areas with high
importance are distorted less than other regions allowing
users to identify the window. Clicking on a context window
brings it to front, pulling it through the holes in the focus
window.

c© 2011 The Author(s)
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Figure 5: The system automatically stretches the whitespace
in the context window to display the window’s text. The small
color-coded insert shows the context window and its scaling.

6. Evaluation

We performed an exploratory user study to evaluate whether
our implementations met the self-organizing windows de-
sign goals, to understand how users interact with the tech-
nique, and to investigate the scenarios in which users can
imagine using this technique.

6.1. Method

We recruited a total of 20 participants (aged 18 to 30, 14
males and 6 females) from a local university. During the
study, they were asked to create a desktop application setup
resembling an everyday computer-use scenario. After an ini-
tial demonstration by the experimenter, the participants set
up multiple windows and tried to replay some common
workflows using self-organizing windows, e.g., planning a
holiday trip with a map application and multiple browser
windows, writing an article with the help of external sources,
or, comparing tabular data with different visualizations.

We informally observed the participants while using the
system and established a ’thinking-aloud’ protocol to assess
how they interacted with the self-organizing windows. Af-
ter the initial experimentation phase, which lasted approxi-
mately 30 minutes, the participants were asked to complete
a questionnaire comparing self-organizing windows to tradi-
tional window management. We then reconfigured the sys-
tem to resemble several previously proposed window man-
agement techniques by varying the cost function. After an-
other experimentation phase, the participants were asked to
answer a second questionnaire, which allowed them to rate
the techniques they had just seen and indicate if they could
imagine using self-organizing windows in their everyday
computer work. After the experiment, we asked the partici-
pants to take part in a follow-up experiment evaluating self-
organizing windows over a longer period of time. Four of the
20 participants agreed to use our technique for at least one
day of their typical computer work.

Figure 6: Pull-Through Window Switching. The user can
pull a downsized version of a context window through the
empty space in the full-screen focus window to make the con-
text windows the new focus.

6.2. Results

The first questionnaire contained seven questions. The an-
swers used a 7-point bipolar Likert scale in which −3
meant that self-organizing windows were greatly inferior
to traditional window management, 0 meant that they were
equal and +3 indicated that self-organizing windows were
greatly superior. On average, the participants considered
self-organizing windows superior in usefulness, amount of
visible useful information, time to access information, visual
appeal, and window management overhead. The question-
naire item accessing the clarity of the association between
windows and information was considered equal to traditional
window management. On average, the participants found the
on-screen motion to be slightly disturbing. See Figure 7(a)
for the detailed results of the questionnaire.

The second questionnaire contained six questions. The
answers used a 5-point unipolar Likert scale in which 0
rated the technique as ’not useful’ and 4 as ’very useful’.
The evaluated techniques were automatic window relocation
(as used in our system and similar to [BF00]), see-through
compositing using cut-aways (as implemented in our system
and in [WSGS11]), see-through compositing using ghost-
ing ( [WSGS11]), opaque windows, uniform window scaling
(as proposed in [MA00]), and content-ware scaling (as pro-
posed by us). Figure 7(b) contains an overview of the mean
and standard error of the answers. Using non-parametric
Friedman’s tests, we compared the see-through compositing
variants cut-aways, ghosting and opaque windows and found
no significant differences among them (χ2(2) = 3.361, p =
.186). A Wilcoxon signed-rank test revealed a significant
difference between content-aware scaling and uniform win-
dow scaling (Z =−3.695, p < .001).

During the final experimental phase, all twenty partici-
pants stated that they would use self-organizing windows
for single windows in their everyday computer work. Four-
teen participants could imagine using self-organizing win-
dows for all windows on their desktop.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Steinberger, M. Waldner, and D. Schmalstieg / Interactive Self-Organizing Windows

Comparison to traditional Techniques

−3

−2

−1

0

1

2

3

0

1

2

3

4

usefulness

am
ountofvisible

inform
ation

tim
e

to
access

inform
ation

disturbance

association
betw

een
w

ind.and
inform

.

visualappeal

w
indow

m
anage-

m
entoverhead

w
indow

relocation

cut-aw
ays

ghosting

opaque
w

indow
s

uniform
scaling

content-aw
are

scaling

Figure 7: Questionnaire results obtained from 20 partici-
pants. (a) compares self-organizing windows to traditional
window management (positive values favor our technique).
(b) rates the different techniques for window management
employed by our system. In the proposed configuration, our
system combines the newly introduced content-aware scal-
ing with window relocation and cut-aways.

6.3. Discussion

Our exploratory user study indicates that we met the design
goals of self-organizing windows, because the users thought
that self-organizing windows were useful, presented more
important information, allowed accessing window content
more quickly, were visually appealing, and reduced the over-
head time for window management when compared to tra-
ditional systems. The participants indicated that the system
was ’intuitive’, produced compositions which ’could not be
generate manually’, and enabled them to access informa-
tion ’more efficiently’. On the other hand, participants found
the overall on-screen motion slightly disturbing. Especially
during the follow-up experiment participants demanded that
the ’windows reached a stable state more quickly, to more
efficiently interact with the windows’. We think this goal
can be met by tuning the optimization parameters and en-
forcing movement constraints on the windows. See-through
compositing received the most diverse feedback. For some
participants see-through compositing was ’very fancy’ and
’appealing’, while others found it ’irritating’. One partici-
pant of the follow-up experiment noted that the ’cut-away
regions were irritating if they were small’. We thus think
that the see-through compositing requires improvement and
should be offered as an optional feature.

In terms of application scenarios, the majority of the par-
ticipants indicated that they would use the system for all of
their desktop windows. The remaining participants thought
that our technique was best applicable for small-to-medium-
sized context windows that stay ’accessible and visible’
when they are made self-organizing. Three participants also
wanted to define the area in which the self-organizing win-
dows should reside, e.g., a pool of context windows limited
to a second monitor.

During the follow-up experiments one participant said
that he would like the system to ’determine which win-
dows were logically related and arrange these windows in
a coherent fashion’. This indicates that a combination with
task management systems or rooms [HC86] seems to be a
promising direction. Two of the four follow-up experiment
participants noted, that they especially liked the way con-
text windows, like search dialogs or floating toolsbars, were
transformed to fit into the content of the main application.
They also mentioned that it took them some time to get used
to the fact that windows seemed to be ’floating’ on the desk-
top. At first, they were not able to predict how the final lay-
out will look like when they moved windows, but they were
’most often in a good way surprised by the composition’.

7. Conclusion and Future Work

We have demonstrated that treating windows as a collec-
tion of coherent pieces of information allows the use of ad-
vanced strategies for displaying important window content.
We combined content-aware scaling with window reloca-
tion and see-through compositing to formulate an optimiza-
tion problem for displaying the most important pieces of in-
formation for a user’s current activity. Using our window-
ing manager, the available display space is used more effi-
ciently because important window content is squeezed into
information-free spaces. This technique allows the users to
work with a main application while important related items
from other applications are still available. An exploratory
user study indicated that self-organizing windows can be
more useful than traditional window management, while
they still need some improvement in terms of on-screen mo-
tion and see-through compositing. Self-organizing windows
greatly benefit from using current GPU technology to pro-
vide real-time frame rates while leaving the CPU’s process-
ing power available for desktop applications. Because the
system works directly on the window textures, no access to
the applications themselves is required and we were able to
integrate it as a plugin for a widely used window manager.

With small adjustments to the algorithm, our system
can emulate different techniques. Any combination of win-
dow relocation, uniform scaling, content-aware scaling, see-
through compositing and opaque windows can be set up
in our system and applied for real world tasks. We intend
to compare these individual factors in a quantitative user
study of information discovery, window switching, and vi-
sual search tasks. We will make self-organizing windows
publicly available to obtain feedback from a wider user base.
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