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Abstract
Harnessing the power of massively parallel devices like the
graphics processing unit (GPU) is difficult for algorithms that
show dynamic or inhomogeneous workloads. To achieve
high performance, such advanced algorithms require scal-
able, concurrent queues to collect and distribute work. We
present a new concurrent work queue, the Broker Queue, a
highly efficient, linearizable queue for fine-granular work
distribution on the GPU. We evaluate its usability and ben-
efits in contrast to existing queuing algorithms. Our queue
is up to one order of magnitude faster than non-blocking
queues, and outperforms simpler queue designs that are unfit
for fine-granular work distribution.

CCS Concepts • Theory of computation→Massively
parallel algorithms; • Software and its engineering→
Scheduling;
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1 Introduction
While the high processing power and programmability of a
graphics processing unit (GPU) make it an ideal co-processor
for compute-intensive tasks, its massively parallel nature cre-
ates difficulties not present on the CPU. To harness the power
of the throughput-oriented GPU architecture, an application
has to fit into a rigid execution model which lacks task man-
agement and load balancing features. As a means towards
efficient execution of complex, task-based routines, previous
work on this domain proposes and describes ways to imple-
ment task management for the GPU in software [4]. At the
core of virtually all task management strategies are concur-
rent queues to distribute work in a first in, first out (FIFO)
manner. The available literature on concurrent queues has a
strong focus on lock-freedom, which is held as key to per-
formance in concurrent systems. However, these algorithms
are usually geared towards CPU architectures, ignoring the
peculiarities of powerful and ubiquitous GPU hardware.

2 Massively Parallel Queuing on GPUs
As Hendler et al. already noted, the additional cost of redun-
dant operations can potentially outweigh the benefits of true
lock-freedom in a massively parallel environment [2]. To pro-
vide an adequate design in such a domain, we first analyze the
requirements for an efficient work queue design on the GPU,
before presenting our proposed algorithm. The underlying
design in the majority of GPUs yields multiple program-
ming and execution paradigms that an algorithm should
support, including independent execution per-thread, per-
warp, sub-warp execution, and cooperative block execution.
As a general design choice, sticking to static memory only
helps resolve potential points of contention caused by dy-
namic memory management of the GPU, which itself is very
costly. To guarantee predictable behavior, a queue should
further exhibit linearizability, which ensures that the final
state of the queue after executing temporally overlapping
operations is the same as when executing said operations se-
quentially in a particular order. Multi-queue setups, which
can be used to enable fundamental prioritization strategies,
require the ability to probe queues for available workload.
Based on these desired properties and features, we present a
concurrent, linearizable queue, the broker queue (BQ), which
shows the performance of a blocking queue, but can return
the control to the scheduler if the queue is empty or full.

The Broker Queue The broker queue employs a ring buffer
to directly store elements, a head and a tail pointer for ticket-
ing, a ticket buffer that locks individual queue elements, and
an explicit counter to weigh enqueue against dequeue oper-
ations. The ticketing itself assigns even-numbered tickets to
enqueue operations and odd numbers to dequeue operations.
The setup of these buffers, as well as the data structure in-
terface, is given in Algorithm 1. Note that W indicates an
atomic transaction, whereas⇐ is a non-atomic transaction;
← stands for a simple local variable assignment. Usually,
atomically operated head and tail pointers for ticketing pro-
hibit a non-blocking reaction to full and empty conditions.
For example, if there is one element in the queue and multi-
ple threads increase the head pointer atomically, it is moved
beyond the tail pointer. Although threads could detect that
the pointer was moved too far, reverting the move is difficult,
as it would require a coordinated effort of all the threads
involved. Additionally, other threads could in the meanwhile
enqueue new elements, validating some of the dequeues that
were already rolled back. To avoid these issue, we introduce
an additional counter variable (Count). It ensures that only
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ALGORITHM 1: The Broker Queue
1 QueueElements RinдBu f f er [N]
2 unsiдned int H ← 0, T ← 0, Tickets[N] ← {0, · · · , 0}
3 int Count ← 0
4 enqueue (Element )
5 while not ensureEnqueue () do
6 (head, tail)W (Head,Tail)

7 if N < tail − head < N +MaxThreads/2 then
8 return Full

9 putData (Element )
10 return Success

11 ensureEnqueue ()
12 Num W Count

13 while true do
14 if Num ≥ N then
15 return false

16 if atomicAdd (Count ,1) < N then
17 return true

18 Num← atomicSub (Count ,1) −1

19 putData (Element )
20 LinearPos ← atomicAdd (T ,1)
21 Pos ← LinearPos % N
22 waitForTicketNumber (Pos , 2 · (LinearPos/N))
23 RinдBu f f er [Pos] ⇐ Element

24 Tickets[Pos]W← 2 · (LinearPos/N) + 1

25 dequeue ( )
26 while not ensureDequeue () do
27 (head, tail)W (Head,Tail)

28 if N +MaxThreads/2 < tail − head − 1 then
29 return Empty

30 return readData ()

31 ensureDequeue ()
32 Num W Count

33 while true do
34 if Num ≤ 0 then
35 return false

36 if atomicSub (Count ,1) > 0 then
37 return true

38 Num← atomicAdd (Count ,1) +1

39 readData ( )
40 LinearPos ← atomicAdd (H ,1)
41 Pos ← LinearPos % N
42 waitForTicketNumber (Pos , 2 · (LinearPos/N) + 1))
43 Element ⇐ RinдBu f f er [Pos]

44 Tickets[Pos]W 2 · ((LinearPos + N)/N)
45 return Element

46 waitForTicketNumber (Pos ,ExpectedTicket )
47 Ticket W Tickets[Pos]

48 while Ticket , ExpectedTicket do
49 Ticket W Tickets[Pos]

Figure 1.Microbenchmark comparing against relevant com-
petitors. Both of our queues are faster than the alternatives.

threads which certainly will be able to enqueue or dequeue
(and thus validly move head and tail) are allowed to interact
with the pointers. For enqueue, this assurance is provided
by ensureEnqueue, which returns true iff there is either
sufficient space in the ring buffer to store an element, or a
sufficient number of other threads have committed to de-
queue an element. Similarly, ensureDequeue returns true
iff there is an element in the ring buffer for the thread to
dequeue, or other threads already committed to enqueue an
element. Count essentially models the relation between head
and tail after all operations of concurrently active threads are
completed. This mechanic is what we refer to as brokering.

3 Results
We compare our algorithm against the fastest lock-free al-
gorithm to date, the Linked Concurrent Ring Queue (LCRQ)
and the non-linearizable Gottlieb Queue (GQ) [1, 3]. Further-
more, we provide a simpler, non-linearizable version of our
queue, the Broker Work Distribution (BWD) to evaluate the
overhead of ensuring linearizability in our design. We run a
microbenchmark with 10 iterations of enqueue followed by
dequeue in each thread, for a varying number of concurrent
threads. Recorded results are shown in Figure 1. Both algo-
rithms outperform the alternative approaches. As proven
by the obtained results, the overhead incurred by ensuring
linearizability in BQ is negligible in this balanced scenario.
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