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ABSTRACT
Dynamicmemory allocation on a single instruction,multiple threads
architecture, like the Graphics Processing Unit (GPU), is challeng-
ing and implementation guidelines caution against it. Data struc-
tures must rise to the challenge of thousands of concurrently active
threads trying to allocate memory. Efficient queueing structures
have been used in the past to allow for simple allocation and reuse
of memory directly on the GPU but do not scale well to different
allocation sizes, as each requires its own queue.

In this work, we propose Ouroboros, a virtualized queueing struc-
ture, managing dynamically allocatable data chunks, whilst being
built on top of these same chunks. Data chunks are interpreted
on-the-fly either as building blocks for the virtualized queues or
as paged user data. Re-usable user memory is managed in one of
two ways, either as individual pages or as chunks containing pages.
The queueing structures grow and shrink dynamically, only cur-
rently needed queue chunks are held in memory and freed up queue
chunks can be reused within the system. Thus, we retain the perfor-
mance benefits of an efficient, static queue design while keeping the
memory requirements low. Performance evaluation on an NVIDIA
TITAN V with the native device memory allocator in CUDA 10.1
shows speed-ups between 11× and 412×, with an average of 118×.
For real-world testing, we integrate our allocator into faimGraph,
a dynamic graph framework with proprietary memory manage-
ment. Throughout all memory-intensive operations, such as graph
initialization and edge updates, our allocator shows similar to im-
proved performance. Additionally, we show improved algorithmic
performance on PageRank and Static Triangle Counting.

Overall, our memory allocator can be efficiently initialized, al-
lows for high-throughput allocation and offers, with its per-thread
allocation model, a drop-in replacement for comparable dynamic
memory allocators.
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1 INTRODUCTION
Many algorithms are challenging to port to the Graphics Process-
ing Unit (GPU) due to their dynamic nature. Various approaches
try to deal with unpredictable, dynamic execution requirements
and varying parallelism. Inherent to those—but also present in
many applications with fixed parallelism—are dynamic memory
requirements. Basic solutions typically solve this problem by either
over-allocating memory or performing expensive precomputations
to estimate memory requirements. Such workarounds are not nec-
essary for CPU computing, as dynamic memory allocation can be
done efficiently, since the number of concurrently active threads
rarely exceeds the double digit zone. However, on massively par-
allel architectures, like the GPU, thousands of concurrently active
threads may access and reallocate resources.

Existing dynamic memory solutions are either limited in scope,
e.g., they focus on single allocation sizes, or use data structures not
well suited for concurrent manipulation. Implementation guidelines
typically advise against the use of dynamicmemory on the GPU. But
not all applications lend themselves to precomputation of resource
requirements or can be run with CPU interference to use the CPU
for memory allocation. The combination of thousands of active
GPU threads with the requirement to keep memory fragmentation
low and avoid CPU round-trips poses a significant challenge.

Various approaches have been proposed to keep track of a large
number of dynamic objects concurrently. The two prevalent meth-
ods to keep track of large numbers of dynamic objects are linked-
lists and arrays. Linked-list-based approaches require each of the
dynamic objects to offer at least a next pointer for traversal. As
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any number of objects can be linked, linked-lists are only limited
by the available memory. However, especially on the GPU, linked-
lists come with many disadvantages. First, update operations on
a linked-list are inherently sequential, hence modifications with
thousands of threads come with a significant slow-down. Second,
the mandatory next pointer incurs a large overhead when managing
small objects. Third, accessing linked-lists causes scattered memory
accesses, deteriorating cache usage on the GPU.

Array-based methods, on the other hand, are—due to their static
size—inherently limited by the number of objects they can manage.
They provide efficient access to individual items and entail no per-
object memory overhead. Furthermore, only currently re-usable
objects store an identifier in the array. Compared to linked-list-
based methods, array-based methods offer vastly greater parallel
access capabilities and potentially increased performance. Many
applications require support for dynamic work generation, often
with a large variance or even unpredictable number of objects,
which requires significant overallocation of the arrays. Even if the
maximum required size for a specific input can be precomputed,
it may be reached for just a fraction of the applications runtime,
leading to overall underutilization of the available memory.

To address the aforementioned problems, we introduceOuroboros:
a new, dynamic memory management system for GPUs, based on
novel, virtualized queues. We start with an array-based queue for
memory reuse of a single, configurable page size. We extend this
concept to support multiple, different page sizes by introducing
chunks. Chunks are broken up into pages, managed by one array-
based queue per page size. To reduce the memory overhead, we
virtualize the array-based queues, retaining their performance ben-
efits over linked-list based methods.

We make the following contributions:

• To allow for differently sized allocations, we extend a simple,
array-based memory manager [22]. Splitting memory into
equally-sized chunks that themselves can be subdivided into
all desired page sizes, we store re-usable pages and chunks
in queues. Bulk allocations of pages are handled using an
optimized synchronization primitive [5].
• We propose two virtualized queues, storing the array-based
queues themselves on memory chunks. Both can either man-
age page indices directly for maximum allocation perfor-
mance or use chunk indices (of chunks with free pages) and
reduce memory requirements further:
– Our array-hierarchy, virtualized queue retains a small chunk
pointer array, as a hierarchy level over the actual queue,
significantly reducing the memory overhead while retain-
ing most of the performance benefits.

– Our linked-chunk, virtualized queue removes the base data
structure all together in favor of pointers to the beginning
and end of the virtual queue.

• We integrate Ouroboros into faimGraph [22] to create Ouro-
Graph, demonstrating the applicability and benefits of our
allocator in a real application scenario.

Compared to the library-provided CUDA Allocator , Ouroboros
achieves speed-ups between 11× and 412×. Evaluating fragmen-
tation, Ouroboros achieves more efficient utilization compared to
Halloc [1], ScatterAlloc [19] as well as the CUDA Allocator .

Compared to faimGraph [22], we reduce memory requirements
on average by 23× and show improved initialization and algorithmic
performance while retaining comparable update performance.

2 RELATEDWORK
Most related to our efforts are other dynamic memory allocators
and queues designed for the GPU.

2.1 Allocators
NVIDIA included dynamic memory allocation on the GPU with
their Fermi architecture in 2009 [14], OpenCL [8] does not provide
an allocator in the language. However, the CUDA allocator is often
regarded as slow and unreliable [10, 19], indicating that dynamic
allocation is difficult on the GPU. The first published dynamic
allocators for the GPU were XMalloc [10] and ScatterAlloc [19].
The former builds on lock-free FIFO queues that hold chunks and
bins of predefined sizes, which can be subdivided further to fulfill
smaller requests. Operations over memory blocks require locks.
The latter is built over a fixed size ring buffer of pages and uses
bitmaps to perform allocations on those pages. Hashing is used to
scatter requests to different pages to reduce congestion.

Following these early allocators, FDGMalloc [21] is similar to
XMalloc, but combines allocations within a warp in a non-standard
interface. Halloc [1] subdivides its fixed-size memory pool into
chunks during initialization and stores them in per bin-size lists.
Memory management essentially moves data between lists, large
allocations are relayed to the CUDA allocator. Finally, aiming for
low register usage, simple allocation strategies that may lead to
higher fragmentations can be used [20]. Only recently, dynamic
GPU memory management has again received attention, as novel
GPU hardware guarantees support for blocking algorithms. This
enables the use of bulk semaphores to reduce interfering concurrent
operation during allocation [5].

While the variety among allocation strategies is high, all alloca-
tors rely on either lists or queues to manage resources. In general,
those are used per chunk size and thus instantiated many times.

2.2 Queues
Efficient parallel queue management is a long standing research
topic. For example, a parallel array-based queue similar to current
GPU designs has been proposed by Gottlieb [6] in 1983. Parallel
CPU-designs have long focused on non-blocking linked-lists, includ-
ing the famous Michael-Scott queue [13] and the Shann-Huang-
Chen queue [4]. With larger parallelism, the ordering between
elements enqueued concurrently is practically irrelevant, which
can be exploited by putting elements into the same bucket [9].

Specialized GPU queue designs are scarce. Task-based GPU run-
time systems have used proprietary solutions, mixing linked-lists
and array-based queues [17, 18]. Scogland and Feng proposed a
blocking array-based GPU queue [15]. Unfortunately, their queue
blocks on empty states making it impracticable for memory allo-
cation. The BrokerQueue [11] removes these blocking states by
pairing concurrent enqueues and dequeues. Blocking only happens
to ensure ordering between pairs. While link-based queues also
work on the GPU, their performance is multiple orders of magnitude
lower than array-based designs [11].
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While array-based queues are thus preferable, all previous de-
signs use a fixed size ring-buffer for efficient access. In conjunction
with per bin size queueing and unpredictable memory allocation
requirements, statically-sized, array-based queues lose their at-
tractiveness for dynamic memory allocation as they significantly
increase memory requirements. With Ouroboros, we combine the
best of both strategies. It is as efficient as an array-based queue, but
is completely built on dynamic memory.

3 BUILDING BLOCKS AND BACKGROUND
In the following, we discuss the building blocks essential toOuroboros
and their relevance to the system.
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Figure 1: One large memory allocation is split into equally-
sized chunks, which are interpreted as ChunkIndex-Chunk
(referenced as whole chunk for reuse), PageIndex-Chunk
(referenced per page) or asQueue-Chunk (holds chunk/page
indices). The beginning holds the memory manager itself
and the memory right after can be linearly addressed by an
application. The end holds the base structure for potentially
many queues for chunk/page reuse.

3.1 Memory Management
Dynamic memory management on the GPU presents a number of
challenges: (1) The high number of concurrently active threads on
a modern GPU can result in an equally high number of concurrent
allocation/deallocation requests. On modern GPUs, this can be as
high as 172 k simultaneously active threads (on the NVIDIA GV100
architecture). (2) Data structures and access primitives have to
be able to deal with such pressure. (3) Since memory is a scarce
resource in the context of GPUs, memory must be used efficiently.
(4) The system should not force a processing model on the user, but
allow single threads to allocate new memory.

Similar to other allocators (including CUDAAllocator),Ouroboros
starts by allocating a block of memory to be managed on the GPU.
The size of this block can be set heuristically or can be provided by
the user. Should the given allocation be too small, the system has
the option to automatically re-initialize in a larger area of memory.
All allocation requests are handled directly on the GPU, avoiding
costly round-trips to the CPU. Amemory manager keeps track of all
available resources and offers standardmalloc and free functionality
for individual threads.

The designated dynamic memory is subdivided into equally-
sized chunks, which can be allocated from the memory manager
in O(1). The size of these chunks can be matched to the specific
application (standard size is 8 KiB). This determines the maximum
allocation size of the base instance of Ouroboros. To service larger
allocations, multiple instances of Ouroboros with multiples of the
base chunk size can be combined. Alternatively, a second allocator,
like CUDA Allocator , can be used or Ouroboros’s chunks could be
integrated into the page-table system (by a vendor).

3.2 Chunks
The dynamic memory region used by the memory manager is split
into equally-sized chunks of memory (larger instances use multiples
of this chunk size). Chunks are addressed by an integer index,
enabling efficient re-initialization in a different memory space. Each
chunk consists of a small region for meta data (padded to multiples
of 128 B) and a large region to hold data (both specific to the actual
use case). Chunks are used in three different ways, as shown in
Figure 1:
• ChunkIndex-Chunk stores user data on pages, if pages
become free on this chunk, the chunk index is placed in a
queue, a bit-field is used to manage the allocations on the
chunk. A chunk can be allocated to a different page size or
different chunk type if completely freed.
• PageIndex-Chunk stores user data on pages. Page indices
are directly stored in queues for reuse. It retains a specific
page size once set.
• Queue-Chunk is used as index storage for virtualized queues,
storing queue data. It can also be allocated to a different use
case once empty.

Chunks used for user data are split into equally-sized pages.
The largest page size is limited by the chunk size, whereas each
split halves the page size. The number of differently-sized pages
determines the number of queues required for potential reuse of
pages, e.g., a chunk size of 8 KiB and ten queues allow for allocations
in the range of 16 B–8192 B within one instance of Ouroboros. To
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Algorithm 1: Basic enqueue and dequeue functionality
1 Function enqueue(index)
2 if atomicAdd(fill_count, 1) > size then
3 atomicSub(fill_count, 1)
4 return

5 pos ← atomicAdd(back, 1) mod size
6 while atomicCAS(q[pos], del, index) , del do
7 sleep()

8 Function dequeue(index&)
9 if atomicSub(fill_count, 1) ≤ 0 then
10 atomicAdd(fill_count, 1)
11 return

12 pos ← atomicAdd(front, 1) mod size
13 while index ← atomicExch(q[pos], del) = del do
14 sleep()

reduce fragmentation, previously allocated, now empty chunks
are held in an index queue, which allows the memory manager to
efficiently reuse empty chunks before allocating new chunks.

3.3 Queues
We utilize an array-based method for memory reclamation in form
of an index queue. Queues are not only used for memory reuse, but
also to reuse other dynamic objects, which includes QueueChunks.
Algorithm 1 demonstrates the basic enqueue and dequeue function-
ality of the queues.

Both first test the fill_count to check the viability of the operation
(dequeue failing is a common occurrence). Then, both use atomic
functions to either write or read a queue value. The queues are
initialized at the start-up of the system to contain deletion markers.
This ensures that concurrent enqueues and dequeues are possible.
The checks in line 6 and 13 are required, since enqueue might
want to write to a spot, which was already advertised as free by
a dequeue operation, but the value has not been read yet. This
is being safeguarded against using an atomic Compare-And-Swap
(atomicCAS) operation with the deletion marker. On the other hand,
a dequeue operation might want to read a value that has been
advertised as present by an enqueue operation, but the write is not
yet visible in global memory.

3.4 Access primitive
In order to regulate access to enqueues/dequeues, we use an access
primitive that keeps track of the total number of pages in the queue
and can be used to drop the fill_count. As access primitive we
use a bulk semaphore [5]. It enables a scalable, two-stage resource
management system, which is based on three counters:
• count (C): Pages currently available
• expected (E): Pages expected to become available
• reserved (R): Pages reserved by waiting threads

It improves upon a simpler counting semaphore, which automates
the process of delegating which threads actually allocate a larger
resource to deal out shares to other waiting threads, by interleaving
the allocations more efficiently. The expected availability is defined

Algorithm 2: Access primitive functions
1 Function Sem::wait(N, #pages, allocChunk())
2 atomic
3 if Sem .C ≥ N then
4 Sem .C ← Sem .C − N
5 return

6 Sem .C ← Sem .C + N

7 while T rue do
8 atomic
9 if Sem .C + Sem .E − Sem .R < N then
10 Sem .E ← Sem .E + #paдes
11 allocChunk()

12 else if Sem .C ≥ N then
13 Sem .C ← Sem .C − N
14 return
15 else
16 Sem .R ← Sem .R + N

17 while Sem .C < N and Sem .R < (Sem .C +Sem .E) do
18 sleep

19 atomic
20 Sem .R ← Sem .R − N

21 Function Sem::signal(N, #pages)
22 atomic
23 Sem .C ← Sem .C + N
24 Sem .E ← Sem .E − #paдes

as the value after all expected pages have been added to the existing
pages and all reserved pages have been subtracted. Based on this
value, each thread determines if it can fulfill its allocation request, if
it has to allocate a new chunk of pages first or if it can reserve a page
on a chunk that is currently being allocated. The bulk semaphore
implements two functions, outlined in Algorithm 2:

• wait(N , #paдes,allocFunc()): try to allocate N pages. If ex-
pected availability is < N , allocate a new chunk with #paдes
pages using allocFunc(). If the current count is large enough,
decrement and continue. Otherwise increase the reserved
value and wait for the resources to be allocated.
• siдnal(N , #paдes): free up N pages by increasing count, if
#paдes > 0 reduce expected by #paдes .

Our implementation packs all three counters into one 64 bit
value, resulting in 21 bits per counter. Simple manipulation of coun-
ters (as in lines 2, 19 and 22) can be done with one single atomic
operation. Only lines 8 to 16 in Algorithm 2 are implemented using
an atomicCAS operation, since different comparisons and assign-
ments have to be performed atomically. To this end, the value is
read from memory, its internal counters are checked and modified
accordingly and the atomic operation is used to compare the value
in memory to the previously read value. Only if they match (no
change has happened), the new value is written to global memory,
otherwise the operations are repeated with the new value.
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4 QUEUES FOR MEMORY MANAGEMENT
The most basic tool for memory management are efficient index
queues [11, 22]. These are usually implemented as array-based
queues, operating on top of a ring buffer. Concurrent access and
efficient queries for empty states are realized using a front and back
pointer as well as a fill count. While these queues can efficiently
manage indivisible objects, they are unsuitable for handling chunks
split into pages. Furthermore, they do not provide an efficient mech-
anism to allocate new pages/chunks once the queue is empty. We
propose two different evolutions of this queue, utilizing the bulk
semaphore for efficient allocation. This design reduces fragmenta-
tion, as previously deallocated memory is used before new memory
is allocated by the memory manager. An instance of Ouroboros can
be configured with queues managing either pages or chunks (con-
taining available pages). One instance manages one or the other,
but Ouroboros can combine multiple instances with different items.

4.1 Queues managing pages
This queue type is the most straightforward evolution of the index
queue, as it also stores page indices directly. The fill counter is
replaced by a bulk semaphore to allow for efficient allocation of
pages. This queue offers O(1) allocation (dequeue from the queue),
as long as the queue still holds free pages, and O(1) deallocation
(enqueue into the queue), as long as the queue is not full. Once
the queue is empty, the bulk semaphore allows for efficient and
interleaved allocation of new pages from chunks. Algorithm 3 lists
the high-level steps needed for page allocation and deallocation. In
the allocation stage, a thread first interacts with the bulk semaphore,
callingwait() (line 11) with the option to allocate a new chunk of
pages (allocChunk() in line 1). If a thread is designated to allocate
new pages, the allocation is first signaled to the bulk semaphore
before the pages are added to the queue. If a page is available
(indicated by the bulk semaphore), the corresponding position is

Algorithm 3: Allocate / Free page with the page-based queue
1 Function allocChunk(memory_manager, #pages)
2 if sem .signal(#pages, #pages) < #spots then
3 memory_manaдer .allocChunk(index)
4 pos ← atomicAdd(back, #pages)
5 foreach paдe in chunk do
6 index ← createIndex(chunk, page)
7 while atomicCAS(q[pos], del, index) , del do
8 sleep()

9 pos ← (pos + 1) mod size

10 Function allocPage(memory_manager, index&)
11 sem .wait(1, #pages, allocChunk)
12 pos ← atomicAdd(front, 1) mod size
13 while (index ← atomicExch(q[pos], del)) = del do
14 sleep()

15 returnmemory_manaдer .getPage(index)

16 Function freePage(index)
17 if sem .signal(1, 0) < #spots then
18 q .enqueue(index)

determined and the page index read, as detailed in Section 3.3.
Deallocation works exactly as dequeue() described in Algorithm 1,
replacing the f ill_count with a bulk semaphore.

This design excels in terms of allocation speed, but bears some
disadvantages. One drawback is limited chunk re-usability. Once
assigned to a page size, a chunk cannot be assigned to a different
page size or chunk type. Even if all pages of a chunk are free and
thus currently in the queue, chunk reuse would require removing
all its page indices from the queue. Additionally, each free page
occupies an entry in the queue. Thus, potentially larger queue sizes
are required. Consequently, the allocation from the chunk pool
takes more time, as all pages are added to the queue by one thread.

4.2 Queues managing chunks
Oneway to overcome the aforementioned issues is to store indices of
chunks with free pages directly in the queue. No matter if one or all
pages are free on a chunk, it always occupies just a single queue spot.
On average, this reduces the required queue size substantially. In the
worst case, if only a single free page is left on each chunk, it needs

Algorithm 4: Allocate / Free page with the chunk-based queue
1 Function allocChunk(memory_manager, #pages)
2 memory_manaдer .allocChunk(index)
3 q .enqueue(index)
4 sem .signal(#pages, #pages)

5 Function allocPage(memory_manager, index&)
6 sem .wait(1, #pages, allocChunk)
7 pos ← f ront mod size
8 while T rue do
9 chunk_index ← q[pos]

10 if chunk_index , del then
11 chunk ← getChunk(chunk_index)
12 mode ← chunk .allocPage(index)
13 if mode = SUCCESS then
14 break
15 else if mode = RE_ENQU EU E then
16 q .enqueue(chunk_index)
17 break
18 else if mode = DEQU EU E then
19 atomicMax(front, pos + 1)
20 atomicExch(q[pos], del)
21 atomicSub(count, 1)
22 break

23 pos ← pos + 1 mod size
24 returnmemory_manaдer .getPage(index)

25 Function freePage(index)
26 chunk ← getChunk(index.chunk)
27 mode ← chunk .freePage(index)
28 if mode = F IRST _FREE then
29 q .enqueue(index.chunk)
30 else if mode = DEQU EU E then
31 atomicExch(q[chunk.queue_pos mod size], del)
32 chunkQueue .enqueue(index.chunk)

33 sem .signal(1, 0)
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Algorithm 5: Allocate page from chunk
1 Function Chunk ::allocPage(index)
2 while curr_count ← atomicSub(count, 1) ≤ 0 do
3 if curr_count ← atomicAdd(count, 1) < 0 then
4 return CONT INU E_TRAV ERSAL
5 else if curr_count = 0 then
6 mode ← RE_ENQU EU E

7 if curr_count = 1 then
8 if mode = RE_ENQU EU E then
9 mode ← SUCCESS

10 else
11 mode ← DEQU EU E

12 else
13 if mode , RE_ENQU EU E then
14 mode ← SUCCESS

15 mIndex ← 0
16 while T rue do
17 mask = bitmask [mIndex ]
18 while lowestbitset ← findFirstSet(mask) do
19 bits ← createPattern(lowestbitset)
20 mask ← atomicAnd(mask[mIndex, bits])
21 if checkBitSet(mask, lowestbitset) then
22 returnmode

23 mIndex ← (mIndex + 1) modmaskSize

as much space as the page index queue. Furthermore, allocation of
a new chunk results in a single enqueue into the queue instead of
one per page. Contrary to the aforementioned queue, both the fill
counter and the bulk semaphore are used. The fill counter reflects the
number of chunks in the queuewhile the bulk semaphore keeps track
of the total number of free pages on those chunks. The allocation
procedures, shown in Algorithm 4, differ from the previous, simpler
approach.

Allocation follows a two-stage approach. First, the semaphore is
queried as before, but this call only guarantees a successful alloca-
tion. To locate the actual page, the current front pointer is loaded
and the chunk at this position is queried for a free page, see Algo-
rithm 5. In case of failure, the current thread advances in the queue
to the next chunk and repeats the query until successful. Once all
pages on a chunk have been allocated, it can be removed from the
queue (line 18 in Algorithm 4). As multiple chunks may become
empty simultaneously, the f ront index is advanced to the largest
of these; the chunk is removed from the queue and the fill count
is reduced. A re-enqueue (line 15 in Algorithm 4) is needed as a
chunk may be emptied (which means one thread will dequeue it
from the queue), but shortly after, threads free pages on it (which
should result in this chunk being added again) without noticing the
prior removal, see line 2 - 14 in Algorithm 5. In this case it might
fall to one allocating thread to re-enqueue the chunk.

Deallocation usually only signals the arrival of a new page and
sets the corresponding bit in the chunk’s bit-mask. The first deal-
location on a chunk adds the chunk to the queue (line 28 in Algo-
rithm 4). The last deallocation on a chunk (line 30 in Algorithm 4)
tries to reduce the semaphore value by a full chunk capacity. If

successful, it flashes the bit mask of the chunk using atomicCAS
operations. If this succeeds as well, the chunk is removed from the
queue and can be reused as any chunk type. Due to the deletion
marker, the queue location is simply skipped during allocation. The
clear focus of this queue type is memory efficiency, as it requires
less queue storage on average. Comparing performance to the page-
based variant, the two-stage approach will typically perform worse,
as the current front will not be advanced as fast (line 19 in Algo-
rithm 4) given a high number of concurrent threads, leading to
queue traversal.

4.3 Supporting different allocation sizes
Each queue described so far is built to handle pages with the same
size. For each page size, a queue must be instantiated in memory.
Furthermore, the queue capacities may have to be large to hold
the desired number of re-usable items: Consider the example of a
dynamic graph where one million vertices require reallocation. All
freed pages might end up in one queue and all allocated come from
another single queue, meaning all queues require the capacity of
one million.

5 VIRTUALIZED QUEUES FOR MEMORY
MANAGEMENT

The aforementioned queues potentially suffer from large memory
overhead. To support a multitude of different page sizes in systems
with significant reuse, the memory overhead can become prohibi-
tive. We introduce two variants of our queue-based memory man-
agement system, which reduce these overheads by virtualizing the
base queue and thereby only keep the currently required queue size
allocated in memory. Queue data itself is stored on QueueChunks,
allocated directly from the memory manager. Once all elements
on a specific QueueChunk are freed, i.e., dequeued, it is placed in
a chunk reuse queue to be reused later, potentially as a different
chunk type, further reducing potential fragmentation. This reduces
the overall memory requirements drastically compared to the stati-
cally sized queues, greatly improving the suitability of this system
to even large use-cases like dynamic graph management.

5.1 Virtualized Array-Hierarchy Queue (VAQ)
A VAQ replaces statically allocated queues by a much smaller chunk
pointer queue (Figure 2, middle). Entries of the virtual queue are
stored on QueueChunks, referenced in the chunk pointer queue. A
chunk size of 8 KiB reduces the static size to 1/2048 of the original
queue. Each thread still determines queue positions using atomics
on the f ront and back pointer. However, these positions are virtual
positions in the queue. The QueueChunk, which holds the real posi-
tion, is determined by dividing the virtual position by the number
of items per QueueChunk modulo the chunk queue size.

The thread assigned to position 0 on aQueueChunk preemptively
allocates a new QueueChunk from the memory manager, initializes
it and places it in the next slot of the chunk pointer queue—we also
place one chunk during initialization. The placement during en-
queue is carried out before accessing the queue element at position
0 to reduce waiting time for other threads that want to access that
chunk. Since the top-level chunk pointer array is always present,
different allocating threads don’t have to wait for their own chunk
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Standard - Queue Virtualized Array-Hierarchy Queue Virtualized Linked-Chunk Queue
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Metadata virtual_start
count (countA + countB)

Metadata virtual_start
count (countA + countB)

<next_chunk>

chunk pointers
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Queue Chunks

chunk pointers
old front back

old count
either

Chunk index
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Page index
Access:

BulkSemaphore
+

Count

Access:
BulkSemaphore

trailing
Chunks

present
Queue Chunks

virtual front virtual back

Figure 2: Overview of all three queue variants. Left: Standard variant storing either page indices directly or indices of chunks
with free pages. Middle: Virtualized variant retaining a base array of chunk pointers, only current allocation state is kept in
memory. Right: Virtualized variant with just pointers to beginning and end of queue, chunks are linked with next pointer.

to exist before they can allocate a new QueueChunk. Interleav-
ing allocations like this further reduces the waiting time for other
threads. While threads are waiting for a QueueChunk, i.e., if the
chunk pointer is a deletion marker, they back-off with a progres-
sively larger timeout value for each failed check. Once the correct
QueueChunk has been located, the low-level enqueue and dequeue
operations follow the same principle as detailed in Algorithm 1.

Each QueueChunk has two counters to determine the current fill-
level (countA and countB in Figure 2), which are stored in a single
variable to allow for simultaneous atomic manipulation. After an
enqueue, both counters are incremented; a dequeue decrements
countB. If aQueueChunk has been fully used and emptied, countA =
#spots and countB = 0. Such a QueueChunk is returned to the
memory manager. The major difference to the previous approaches
is the top-level QueueChunk management. While this leads to one
indirection and waiting overhead depending on the queue access
pressure, the VAQ greatly reduces static storage requirements.

5.2 Virtualized Linked-Chunk Queue (VLQ)
The VLQ (Figure 2, right) replaces the chunk pointer queue of
VAQ with a linked chunk pointer queue, reducing the static storage
requirements to just three pointers (f ront ,back and old). Removing
the static queue also removes the size limit, as queues can grow
arbitrarily large and shrink to virtually nothing. Similar to the
VAQ, threads determine their virtual enqueue and dequeue position
atomically but now start traversal at either f ront or back . Each
QueueChunk stores the virtual_position of its first slot, such that
threads can locate their QueueChunks and stop traversal.

During enqueue, a thread reads the current back and uses the
virtual_position to determine if it is at the correct QueueChunk
and if so, performs the enqueue. Otherwise, it traverses to the next
QueueChunk and so on. If the next QueueChunk has not been placed
in the list yet, it spins on the next pointer using exponential back-off.
The thread with position 0 on a QueueChunk again preemptively al-
locates the next chunk. Note that we allocate multiple QueueChunks
in parallel before they are placed, as threads can determine whether
they are assigned to a first slot on a chunk from virtual_position.

Only the placement itself, i.e., setting the next pointer on the previ-
ous QueueChunk, is inherently serial.

Algorithm 6: Move front/back pointer along
1 Function Chunk::setPointer(ptr)
2 chunk ← this
3 while atomicCAS(ptr, chunk, chunk.next) = chunk do
4 if chunk .next .countA = #spots then
5 chunk ← chunk .next

If countA = #spots after an enqueue, all enqueues on this chunk
have been finished and the back pointer can be moved using Algo-
rithm 6. Due to the potentially high pressure on the queue, threads
are not guaranteed to see their chunks being full in the correct list
order. Hence, only the thread that fills up the QueueChunk to which
back currently points, moves it along the list to the first non-full
chunk. After a successful swap, the thread continues with the next
chunk as it may have filled up earlier (and the atomicCAS of another
has failed).

A dequeue operation starts from f ront . The low-level dequeue is
performed as in the VAQ; after a successful dequeue, countB is decre-
mented. If countA = #spots and countB = 0, all enqueue/dequeue
operations on a chunk are completed and the front pointer is moved,
as in Algorithm 6. Additionally, we count the successful moves.

Moving the f ront pointer does not remove the corresponding
QueueChunks. This is crucial, as threads may still be reading from
thisQueueChunk during traversal. While we could use hazard point-
ers [12], they would introduce a significant overhead. Instead, we
delay the clean-up by introducing the old pointer, which lags be-
hind the actual f ront . When moving f ront , we increment another
variable, old_count , and only if it passes a threshold t , old is also
moved and the QueueChunks are submitted for reuse. Thus, we
always leave a trail of ≥ t chunks behind f ront . t is determined
heuristically from the number of potentially concurrently-active
threads, which is limited for a given GPU.
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Figure 3: Comparing allocation performance of Ouroboros with the native CUDA device allocator (Cuda), ScatterAlloc and
Halloc. (S|VA|VL) denote standard, virtualized array-hierarchy and linked-chunk queues while (P|C) denote managing pages
directly or chunks with free pages, resulting in six different variants of Ouroboros. Top Left: 10 000 allocations, Top Right:
100 000 allocations; allocation sizes from 16 B–8192 B. Mixed allocates all sizes in that range. Middle: Performance scaling for
four allocation sizes, ranging from 1Thread(s)–1 000 000Thread(s) (except for 8192 B due to the limited manageable memory
size). Bottom Left: Largest address range of returned pointers for 100 000 allocations of given size, Bottom Right: Performing
concurrent allocations/deallocations (with 50 % overall growth), reporting maximum address range observed, run until out-of-
memory failure with 2GiB of manageable memory. Both fragmentation plots report the same maximum address range for all
variants of Ouroboros.

6 EVALUATION
All performance measurements were conducted on an NVIDIA
TITAN V (12 GB V-RAM) and an Intel Core i7-7700 with 32 GB of
RAM. The framework is CMake-based and runs both on Linux and
Windows, all given results were captured on Linux with gcc 8.2.1
using NVIDIA CUDA 10.1.243.

We first evaluate allocation performance, comparing Ouroboros
to the native device allocation functionality provided by CUDA,
as well as Scatteralloc and Halloc (Section 6.1). Then, we present
results of a real-world example (Section 6.2), integrating Ouroboros
and CUDA Allocator into faimGraph [22], a dynamic graph frame-
work, which performs allocation of fixed-size pages on the GPU.
Ouroboros is initialized with a queue capacity of 2 000 000 elements
and a chunk size of 8 KiB. This results in 10 different queues for

allocations in the range 16 B–8192 B. Ouroboros follows the stan-
dard memory manager interface using malloc/free to allocate or
free memory on the device, as can be seen in Algorithm 7.

6.1 Evaluation of allocation performance
To investigate allocation performance, we compare against the de-
vice allocation functionality provided by NVIDIA and also briefly
highlight ScatterAlloc [19] as well as Halloc [1]. For all test scenar-
ios, the frameworks were instantiated with 2GiB of manageable
memory.

6.1.1 Allocation performance. We test two allocation counts (10 000
and 100 000 allocations) and allocation sizes from 16 B–8192 B and
amixed case with allocations from within that range. Performance
results averaged over 100 runs are given in Figure 3.
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Algorithm 7: End-to-end usage example
// Configure an instance

1 using MemoryManager = Ouroboros<OuroborosPages<Params...>,
OuroborosChunks<Params...>, ...>

// GPU code

2 Function __global__ deviceKernel(MemoryManager mm)
3 auto ptr = mm.malloc(size);

// Memory stays persistent over kernel launches

4 mm.free(ptr);

// CPU code

5 MemoryManager mm(SIZE);
6 deviceKernel<<<>>>(mm);

Interestingly, performance of the native CUDA allocator can
be divided into three intervals: (1) allocations ≤ 64B, the time
per allocation is constant, indicating a padding to 64 B; (2) from
64 B–1024 B, the allocation time increases with size; (3) a 2048 B
allocation is approximately 110–160× faster than a 1024 B alloca-
tion, followed again by an increase in time. Unfortunately, NVIDIA
does not provide any information about the internals of their allo-
cator. Thus, one can only speculate about the cause of this behavior.
CUDA Allocator is seemingly not directly re-using freed pages, as
there is no difference between the first and any following allocation
after freeing the previously allocated memory.

Contrary, Ouroboros profits from memory reuse and shows per-
formance increases when allocating from a (partially) filled queue.
Comparing our page-based approaches to the CUDA Allocator ,
performance is on average 163× better for 10 000 allocations and
274× better for 100 000 allocations. Comparing our chunk-based
approaches to the CUDA Allocator , performance is on average 15×
better for 10 000 allocations and 18× better for 100 000 allocations.
Our chunk-based methods perform better up to the split at 1024 B
and only fall behind for larger sizes. Our page-basedmethods always
significantly outperform CUDA Allocator . Note that our virtualized
methods show little variance compared to their fixed-size array-
based counterparts, indicating the effectiveness of our virtualization
strategies.

We also tried to evaluate Halloc and ScatterAlloc, but both expe-
rience issues on newer hardware. To gather results we explicitly
enforced warp-synchronous behavior for both. Furthermore, Hal-
loc fails on some allocation sizes tested (and even for those that
work, allocating different sizes during one kernel call also fails). In
light of these caveats, a comparison to Halloc results in a perfor-
mance ratio (thalloc/touroboros for the completed cases), which is
on average 1.68× (page-based) and 0.15× (chunk-based) for 10 000
allocations and 1.74× (page-based) and 0.16× (chunk-based) for
100 000 allocations.

Compared to ScatterAlloc, the performance ratio is on average
4.33× (page-based) and 0.30× (chunk-based) for 10 000 allocations
and 12.5× (page-based) and 1.12× (chunk-based) for 100 000 alloca-
tions. These good results for Ouroboros are surprising, as its focus is
on reducing the memory footprint and fragmentation, while those
allocators trade fragmentation for allocation speed.

6.1.2 Performance scaling. To evaluate performance scaling over
the number of calling threads, we test four representative allocation
sizes (32 B, 128 B, 1024 B and 8192 B), as can be seen in Figure 3.
The CUDA Allocator performs consistently worse than all other
competitors up to 1024 B, overall showing a consistent decrease in
allocation performance over the number of threads with all tested
allocation sizes. After 1024 B, as already detailed in Section 6.1.1,
the performance resets to a similar level as with 32 B.

Halloc performs well for 32 B, but already at 128 B we see the
larger thread counts fail, which is exacerbated at 1024 B. At 8192 B
it internally relays allocation calls to the CUDA Allocator .

ScatterAlloc performs well for the first two testcases, but starts to
slow down for the larger allocation sizes and becomes even slower
than the CUDA Allocator for the largest tested size.

Our chunk-based methods perform better than the CUDA Allo-
cator up until 1024 B, where they then fall in line with ScatterAlloc.
Our page-based methods perform well for all four tested allocation
sizes, being on-par with Halloc and ScatterAlloc for the first two
sizes while gaining the performance edge for 1024 B and greatly
outperforming all other for 8192 B.

6.1.3 Fragmentation. To test memory efficiency, the first testcase
continuously allocates 16 B elements until out-of-memory.Ouroboros
manages to utilize 98.35 % of the given memory, ScatterAlloc comes
second with 87.1 %, followed by Halloc with 84.5 % and the CUDA
Allocator with just 17.2 %—indicating thatCUDAAllocator has some
internal limitations on either the number of allocations or alloca-
tions of small size.

Figure 3 shows two further fragmentation tests. The testcase on
the bottom left evaluates the maximum address range returned by
the allocator for 100 000 allocations of the given size. The CUDA
Allocator reveals an interesting pattern; the returned address are
always nearly exactly the allocated amount of memory apart. Scat-
terAlloc starts with a large range but holds this until it finally in-
creases for larger allocations sizes, while Halloc has a significant
increase after 32 B. Note that Halloc was configured to only do one
allocation per warp to complete the testcase. Ouroboros stays very
close to the actual allocation size, which is especially important if
one wants to use parts of the entire memory for other data, e.g., to
store dynamic vertices in a dynamic graph framework.

The testcase on the bottom right performs concurrent alloca-
tions/deallocations of 16 B (freeing just 50 % of the allocations each
iteration, resulting in a 50 % growth), tracking the maximum ad-
dress range until out-of-memory. This once again highlights the
efficiency of Ouroboros, outlasting ScatterAlloc by about 200 itera-
tions and Halloc by about 300 iterations. Interestingly, the CUDA
Allocator slows down with each iteration, to about 7 s before failure.
ScatterAlloc maintains performance except for the last iterations,
while Ouroboros and Halloc maintain performance throughout.

6.2 Evaluation of dynamic graph scenario
To evaluate the performance in a real-world scenario, we adapted
faimGraph to use Ouroboros and also the CUDA Allocator to handle
dynamic adjacency data. We will call the version using Ouroboros
OuroGraph and the version using the CUDA Allocator CudaAlloc-
Graph. Using these allocators, adjacency data is stored on contigu-
ous memory pages, compared to the linked-list of pages used in
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Name vertices edges adj. adj. adj.
mean std. dev. max

luxembourg_osm 114599 239332 2.08 0.41 6

coAuthorsCiteseer 227320 1628268 7.16 10.63 1372

coAuthorsDBLP 229067 1955352 6.54 9.82 336

ldoor 952203 46522475 48.86 11.95 77

audikw_1 943695 77651847 82.28 42.45 345

delaunay_n20 1048576 6291372 6.0 1.34 23

rgg_n_2_20_s0 1048576 13783240 13.14 3.63 36

hugetric-00000 5824554 17467046 3.0 0.03 3

delaunay_n23 8388608 50331568 6.0 1.34 28

germany_osm 11548845 24738362 2.14 0.53 13

nlpkkt120 3542400 96845792 27.34 3.09 28

nlpkkt200 16240000 448225632 27.6 2.42 28

nlpkkt240 27993600 774472352 27.66 2.22 28

europe_osm 50912018 108109320 2.12 0.48 13

Table 1: Graph data set used for dynamic graph performance
evaluation, taken from the 10th DIMACS Graph Implemen-
tation Challenge [2].

faimGraph. This speeds up the adjacency access and manipulation
significantly and further simplifies the framework interface. The
rest of the faimGraph framework remains unchanged. We omitted
other frameworks due to prior mentioned issues. With this setup,
we can also compare to other graph framework, like aimGraph [23],
cuSTINGER [7], Hornet [3] and GPMA [16]. faimGraph has its queue
initialized to 2 000 000 elements and uses 64 B pages. The algorithms
were only modified to account for different adjacency traversals.
The used graph data set is listed in Table 1 .

6.2.1 Initialization. faimGraph and OuroGraph are initialized sim-
ilarly: both first determine memory requirements in parallel and
then efficiently write adjacencies. For CudaAllocGraph, the initial-
ization cannot be sped up similarly as no knowledge about the data
layout and underlying structures is available, which forces us to
rely on a separate call tomalloc() for each adjacency. The main dif-
ference in the initialization between OuroGraph and faimGraph is
that OuroGraph flashes the complete memory with deletion markers
first, such that all chunks can also be used as QueueChunks without
prior initialization. faimGraph, on the other hand, has to perform
extra traversal and linkage of pages during the setup. These differ-
ences in the initialization are directly reflected in performance as
shown in Figure 4.

Both, faimGraph and OuroGraph, outperform CudaAllocGraph
by an average of 1785×. For smaller and sparser graphs, faimGraph
has the performance edge, as little to no page traversal is needed
and it does not flash the complete memory as OuroGraph does.
For denser and/or larger graphs, the difference shrinks or even
reverses, as the included overhead of OuroGraph gets amortized by
its more efficient memory access patterns. Concerning the memory

footprint, it is clearly visible that both virtualized variants outper-
form standard OuroGraph and faimGraph in all cases, reducing
the memory footprint on average by 23–32× compared to faim-
Graph. For smaller graphs, faimGraph has a small edge over the
non-virtualized OuroGraph, but for larger (and especially sparser)
graphs, standard OuroGraph also clearly outperforms faimGraph.
The difference is largest for europe, a large graph with more than
50 million vertices, but a low adjacency degree. This increases the
memory usage of faimGraph as the 64 B pages are too large for
this graph, leaving a large portion of each page unused. OuroGraph
packs each adjacency into nearly contiguous memory, as a fitting
page size can be chosen for each.

6.2.2 Edge Updates. We perform edge updates with a batch size of
100 000 and (1) randomized source as well as (2) with higher update
pressure by fixing the source to a range of 1000 vertices, denoted
random and pressure in Figure 4 respectively. Note that faimGraph
does not have to alter its initial adjacency data in the insertion case
(pages are appended at the back) and remaining data in the deletion
case (pages are just freed up at the back, remaining pages stay).
CudaAllocGraph and OuroGraph on the other hand copy complete
adjacencies if the update results in a larger or smaller size compared
to their current page size. This could be remedied by allowing some
overallocation on the existing allocations. Nevertheless, OuroGraph
offers simplified and more efficient edge update procedures.

The comparison in Figure 4 shows the clear advantage in alloca-
tion performance of OuroGraph over CudaAllocGraph. A compar-
ison to faimGraph necessitates different angles of interpretation,
as updating a graph is multifaceted and allocation performance
is only one important factor. For smaller and sparse graphs, we
observe the page-based variants of OuroGraph outperform faim-
Graph. This is due to less frequent adjacency copies and/or moving
smaller amounts of data for OuroGraph. Denser and larger graphs
reverse this trend when the cost of copying individual adjacencies
outweighs the more elaborate traversal of faimGraph. Chunk-based
variants of OuroGraph show less favorable performance compared
to faimGraph, as (randomized) updates cause lots of chunks with
just few pages to be enqueued. CudaAllocGraph performs worst in
all cases, being orders of magnitude slower for larger graphs.

6.2.3 Algorithms. We also evaluate algorithmic performance of
OuroGraph and faimGraph using PageRank and Static Triangle
Counting (STC). Presenting an algorithm with contiguous mem-
ory instead of partially-contiguous, linked memory (faimGraph)
opens up performance potential. Furthermore, as OuroGraph elimi-
nates the need for traversals, thread divergence and extra memory
accesses are reduced. Lastly, as OuroGraph resembles more popular
data structures like Compressed-Sparse-Rows (CSR), it is conve-
nient to port efficient algorithm implementations without the need
to convert the adjacency traversal to a proprietary structure.

PageRank. Performance comparison using PageRank (Figure 4)
clearly brings forward the benefits of OuroGraph—without thread
divergence and page traversal, the GPU can get perfect memory
access on adjacencies. Throughout the test set, performance benefits
of OuroGraph are between 6 %–100 % (50 % on average) with the
contiguous adjacencies compared to the linked pages of faimGraph.



Ouroboros: VirtualizedQueues for Dynamic Memory Management on GPUs ICS ’20, June 29– July 02, 2020, Barcelona, Spain

0.10

1.00

10.00

100.00

1000.00

10000.00

m
s

Graphs

Inser on - 100,000 - Random

Our - S - P Our - VA - P Our - VL - P Our - S - C Our - VA - C Our - VL - C faimGraph CUDA

0.10

1.00

10.00

100.00

1000.00

10000.00

m
s

Graphs

Dele on - 100,000 - Random

Our - S - P Our - VA - P Our - VL - P Our - S - C Our - VA - C Our - VL - C faimGraph CUDA

0.10

1.00

10.00

100.00

1000.00

10000.00

m
s

Graphs

Inser on - 100,000 - Pressure

Our - S - P Our - VA - P Our - VL - P Our - S - C Our - VA - C Our - VL - C faimGraph CUDA

0.10

1.00

10.00

100.00

1000.00

10000.00

m
s

Graphs

Dele on - 100,000 - Pressure

Our - S - P Our - VA - P Our - VL - P Our - S - C Our - VA - C Our - VL - C faimGraph CUDA

0.01

0.1

1

10

100

1000

m
s

Graphs

PageRank

ouroGraph faimGraph

0.01

0.1

1

10

100

1000

m
s

Graphs

STC

ouroGraph faimGraph

0.1

1

10

100

1000

10000

100000

m
s

Graphs

Ini aliza on Performance

ouroGraph - S ouroGraph - VA ouroGraph - VL faimGraph cudaGraph

1

10

100

1000

M
B

Graphs

Ini aliza on Memory Footprint

ouroGraph - S ouroGraph - VA ouroGraph - VL faimGraph

Figure 4: Dynamic graph performance for OuroGraph variants (S |VA|VL denote standard, virtualized array-based and virtual-
ized linked-list based methods, P |C define if page or chunk indices were stored), faimGraph and CudaAllocGraph. Top Left:
Initialization performance for given graphs in ms, Top Right: Memory footprint after initialization in MB, Middle: Two test-
cases, updating 100 000 edges with randomized source (second from the top) and 100 000 edges with source focused on a range
of 1000 (third from the top), insertion performance on the right and deletion performance on the left. Bottom Left: Algorithm
performance for PageRank and Bottom Right: Algorithm performance for STC.

STC. With STC we see the same trajectory. OuroGraph can sig-
nificantly reduce the amount of excess memory accesses and im-
prove code efficiency. Furthermore, we can balance the number
of workers per adjacency with greater freedom, as this is not con-
strained by the page size. Compared to PageRank, which allows
for a comparatively simple setup, we can significantly reduce the

register usage between faimGraph and OuroGraph, as the algorithm
can work with indices alone and does not require larger iterators.
The performance difference is again significant, see Figure 4. On
average, performance is 80 % higher (ranging from 3 %–200 %) com-
paring OuroGraph to faimGraph. When starting whole warps per
adjacency, we can more efficiently read in adjacency data and use
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shuffle instructions to communicate, regardless of adjacency size.
This is limited in faimGraph—due to the fixed page size. Overall,
faimGraph is a better option, only if update performance for large
graphs is more important than algorithmic performance. CudaAlloc-
Graph falls short on update performance in all cases. OuroGraph is
close to faimGraph’s update performance, but significantly reduces
memory requirements and boosts algorithmic performance.

7 CONCLUSION & FUTUREWORK
Dynamic memory allocation on GPUs is a long standing and much
researched topic. Ouroboros introduces a novel approach for mem-
ory reuse based on array-based queues, improving upon the strengths
of previous approaches. By expanding the data structures to allow
for bulk allocation and virtualizing its base structure, we achieve
efficient memory reuse and high allocation performance. By only
keeping the current allocation state in memory, Ouroboros’s ad-
vanced queueing structures significantly trim down the memory
overhead that comes with queue-based memory management.

We propose six configurations of Ouroboros, each managing
pages, allocated from larger chunks of memory. The base queue op-
erates either on pages directly or on chunks holding pages, trading
allocation speed for memory overhead. They can be realized fully
in memory, virtualizing the queue by storing queues on chunks
of memory using a small pointer array or just keeping pointers to
the beginning and end of the queue. Each virtualization step re-
duces the inherent memory overhead at the cost of a slight decline
in performance. Allocation performance compared to the native
CUDA allocator shows a speed-up of 118× on average. Incorporat-
ing Ouroboros into faimGraph shows improved initialization times,
memory footprint and algorithmic run-times on PageRank and STC
and shows promising results for edge updates as well.

In the future, we consider investigating queue compaction tech-
niques, such that our page-based queues can profit from chunk
reuse, independent of the prior chunk type. Additionally, we will
add group-based allocation, such that groups of threads (warps,
blocks or arbitrary size) can allocate pages efficiently together with-
out the need for separate allocations.

Overall, our evaluation suggests that Ouroboros not only shows
great performance over the full allocation range, but can also, due to
its per-thread allocation model, serve as a drop-in replacement for
currently used device memory allocators. By making Ouroboros and
its future derivatives open source, we hope to inspire further work
on dynamic memory management on GPUs and thereby shape the
future of parallel algorithms.
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