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Figure 1: Using the operator graph, we optimize the procedural generation of an entire city containing 50 000 buildings and 10 million
triangles. The original shape grammar takes more than five minutes to generate on the CPU. Previous work on the GPU requires 630 ms.
Using our optimization framework, the generation time reduces to 109 ms by only changing the scheduling of operations on the GPU.

Abstract

In this paper, we present the concept of operator graph scheduling for
high performance procedural generation on the graphics processing
unit (GPU). The operator graph forms an intermediate representation
that describes all possible operations and objects that can arise
during a specific procedural generation. While previous methods
have focused on parallelizing a specific procedural approach, the
operator graph is applicable to all procedural generation methods
that can be described by a graph, such as L-systems, shape grammars,
or stack based generation methods. Using the operator graph, we
show that all partitions of the graph correspond to possible ways
of scheduling a procedural generation on the GPU, including the
scheduling strategies of previous work. As the space of possible
partitions is very large, we describe three search heuristics, aiding
an optimizer in finding the fastest valid schedule for any given
operator graph. The best partitions found by our optimizer increase
performance of 8 to 30x over the previous state of the art in GPU
shape grammar and L-system generation.
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1 Introduction

In recent years, content creation for virtual worlds has become in-
creasingly limited by human effort, rather than technology. Manually
crafting every detail of vast virtual worlds for games and feature
films is tedious and time-consuming. Thus, it is not surprising that
procedural generation is becoming widely adopted in the digital
content creation industry, shifting part of the labor from designers
to an automated system. Using a procedural approach, complex
models are created from small procedural programs or rule sets. A
simple program written by an expert can generate a large number of
plausible variants of a model type, e.g., buildings for an entire city.

Procedural generation methods are present in all phases of a content
authoring pipeline. In the design phase, tools like automatic object
placement and style transfer [Guerrero et al. 2015] may evaluate
procedural programs hundreds of times to match high level modeling
goals. Similarly, inverse procedural modeling techniques [Talton
et al. 2011] may execute thousands of parameter sets to steer a model
towards a target function. In the deployment phase of an open world
video game, a program might be evaluated millions of times, as the
user moves through a procedural world. Analogously, during the
rendering of a movie, procedural models might be evaluated on-
the-fly for every frame, because reevaluation is more cost-efficient
than keeping models around. While the aforementioned applications
use different procedural generation methods, they all re-evaluate a
specific program or grammar thousands to millions of times, with
speed being key for usability, frame rates or production time.

In this paper, we consider the challenge of mapping a procedural
generation to massively parallel architectures like the graphics pro-
cessing unit (GPU), with the goal of achieving the lowest possible
generation time. While prior work has proposed ad hoc strategies
specific to particular generation methods [Lipp et al. 2010; Marvie
et al. 2012; Steinberger et al. 2014b], we introduce a generalized,
systematic approach to scheduling a class of procedural generation
methods. We introduce the operator graph, an intermediate represen-
tation that serves as a unified formal model for a variety of procedural
systems and encodes a space of ways to map the generation onto the
GPU. Specifically, we make the following contributions:
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• We introduce the operator graph as a representation for a pro-
gram or grammar written in a variety of procedural languages.
It is independent of a particular way a designer might write the
program or describe the generation process.

• We establish the operator graph as an intermediate representa-
tion for a domain-specific programming system for procedural
generation, in which the operator graph not only describes
the generation, but its partitions also encode different ways of
scheduling the execution of the program on the GPU. Exist-
ing GPU approaches can be reduced to a specific partitioning
scheme.

• We show that the scheduling for a given program or gram-
mar can be optimized using an auto-tuner based on heuristic-
supported search. With an upfront time investment for optimiz-
ing the schedule, the auto-tuned generation outperforms the
previous state-of-the-art and hand-tuned schedules.

To validate our results and show that the operator graph can be used
to parallelize different types of procedural generation systems, we
analyze graphs of varying sizes and different characteristics. We
fully analyze the space of possible partitions for a number of small
graphs verifying the proposed heuristics. For large graphs, we show
that the scheduling has considerable influence on the execution time,
leading to speed ups of up to 30× over previous GPU approaches.
Discussing how the operator graph partitioning covers previous GPU
evaluation strategies we compare different scheduling strategies
within the same framework, showing that an optimized schedule
is up to 14× faster than hand crafted solution. We conclude that
optimizing the scheduling based on the operator graph leads to the
currently fastest procedural generation evaluation on the GPU.

2 Related work

Computer aided procedural modeling has a long history.
Stiny’s original shape grammars [1975] were one of the first ap-
proaches to apply a sequence of procedural operations on a given
set of shapes. Later on, Stiny refined this work to define set gram-
mars [Stiny 1982]. While shape grammars consider operations on
shapes, similar procedural generation processes can be defined on
character strings. These approaches, called L-systems, are inspired
by plant growth patterns [Prusinkiewicz and Lindenmayer 1990].
Similarly, Wonka et al. [2003] found that facades can effectively
be described by split grammars, a special case of shape grammars,
which restrict the available operations to space subdivisions. Com-
bining concepts from the original shape grammar work, L-systems,
and split grammars, CGA shape [Müller et al. 2006] is able to
describe complex buildings and cities. While the work on shape
grammars and L-systems spans three decades, the idea behind pro-
ductions generation remains unchanged. Given a shape or symbol,
an operation is applied to that entity to yield new shapes/symbols.

One of the most important extensions to simple procedural gen-
eration is considering external influences, such as the environ-
ment [Prusinkiewicz et al. 1994], external guidance [Beneš et al.
2011], or vector fields [Li et al. 2011]. In contrast to external in-
fluences, interactions between generated objects can be modeled,
such as interconnecting different structures [Krecklau and Kobbelt
2011], resolving intersections of generated geometry [Parish and
Müller 2001], or querying neighboring shapes [Müller et al. 2006].
Treating shapes as first class citizens allows a variety of queries
between generated shapes and even temporary objects [Schwarz and
Müller 2015]. Procedural modeling can also be extended to support
more general terminal symbols [Krecklau et al. 2011] or more basic
mesh editing functions [Havemann 2005]. While these extensions
introduce additional dependencies into the generation, the very basic
principle of procedural generation remains unchanged.

Parallel Evaluation of Grammars is the basis for computation on
the GPU. L-systems and shape grammars, which form the foundation
of many procedural systems, provide a high degree of parallelism.
In L-systems, every symbol can be worked on independently. Shape
grammar evaluation follows a tree-like derivation, where different
nodes in the tree can be worked on in parallel. Mapping this parallel
workload to the GPU, one can distinguish two classes of approaches.
The first class encodes the procedural evaluation within the GPU
graphics pipeline; the second uses the GPU compute mode to ex-
ecute procedural programs written in CUDA or OpenCL. For the
first class, a large number of approaches tailored to specific gener-
ation systems exist. Split grammars have been evaluated in vertex
and pixel shaders [Lacz and Hart 2004], L-system have been de-
rived using multi-pass rendering [Magdics 2009], and full shape
grammar evaluation has been spread across geometry and pixel
shaders [Marvie et al. 2012]. Instead of generating output geometry,
facade grammars can also be executed for every screen pixel [Hae-
gler et al. 2010; Marvie et al. 2011]. To achieve good performance,
the aforementioned approaches need to handle irregular parallelism
introduced by the nature of procedural generation. This is mostly
done with sorting and reshuffling data between launches and, as
found by most authors leads, to a significant overhead.

The second class of approaches also include specific solutions for
L-systems and shape grammars. Lipp et al. [2010] proposed an
approach similar to the traditional multi-pass rendering, launching
successive kernels. Between launches, prefix sums and sorting are
required for context sensitivity and to reduce execution divergence.
Using a work queue, Steinberger et al. [2014b; 2014c] perform
an entire shape grammar derivation within a single kernel launch,
dynamically handling the challenges of irregular parallelism. Con-
sidering both classes of algorithms, there are simply a lot of options
for mapping procedural systems to the GPU. While each of the
aforementioned approaches provides an efficient solution for one
specific class of procedural systems, there is no approach that can
be applied to different domains or considers different options for
scheduling. Striving for the most efficient generation, considering
automation for making scheduling decisions seems to be the logical
next step. To enable automation for different classes of procedural
systems, one requires a common representation for all problems.
With the operator graph, we provide this representation and show
how it can be used to automate scheduling decisions for efficient
procedural generation on the GPU.

Scheduling of domain specific workloads has received in-
creased research interest, as mapping the execution of complex prob-
lems to parallel hardware can be a tedious task. While specialized
frameworks have been proposed that assist application programmers
in different domains, no such tool exists for procedural generation.
For example, OptiX [Parker et al. 2010] dynamically schedules ray-
tracing application on the GPU, the GRAMPS scheduler [Sugerman
et al. 2009] can schedule graphics pipelines on CPU architectures,
Halide [Ragan-Kelley et al. 2012; Mullapudi et al. 2016] assists and
automates the scheduling of image processing algorithms for the
CPU and GPU, and Piko [Patney et al. 2015] schedules graphics
pipelines on the GPU. Most approaches use a domain-specific inter-
mediate representation in the process. He et al. [2015] even encode
possible schedules in their representation. Similarly, our operator
graph can be seen as an intermediate representation for procedural
systems that also encodes schedules. However, none of the afore-
mentioned approaches is suitable for procedural generation with its
typically large number of relatively efficient operations that often
only vary in terms of parameters. With our approach, we fill this
gap, providing a common representation for a variety of procedural
generation approaches, a domain-specific programming design for
procedural systems, and an auto-tuning scheduler for the GPU.



3 Operator graph representation

While a wide variety of procedural generation methods for different
application domains has been proposed, their execution model can
most often be represented with a rather simple graph. Consider the
following methods: L-systems [Prusinkiewicz and Lindenmayer
1990], which were developed to model plant growth, define expan-
sions on symbol strings. Shape grammars, like CGA shape [Müller
et al. 2006], which are well suited to model buildings, define spatial
relationships between shapes. Stack-based generation languages,
such as GML [Havemann 2005], which are well suited to model
detailed man-made objects, define a list of fine-grained modeling
operations on polyhedra.

The common factor among them is that they all describe sequences
of operations applied to objects. This observation creates a link to
dataflow programming [Wadge and Ashcroft 1985] or the stream
processing abstraction [Sussman et al. 1983], in which programs
are defined as directed graphs. Graph-based abstractions have been
used for procedural generation before. For example, commercial
products like Houdini by Side Effects Software or Autodesk Maya
use data-flow networks. Directed acyclic graphs have been used for
simple shape grammars [Patow 2012]. However, these graphs do
not support more complex generation methods or offer the informa-
tion needed for efficient scheduling. To this aim, we introduce the
operator graph as an intermediate representation that captures the
requirements a procedural approach imposes on a scheduler. In this
section, we describe the basics of the operator graph. A detailed ac-
count how it can be used to represent the aforementioned procedural
modeling methods is given in Appendix A.

Graph definition We model the procedural generation as a di-
rected multigraph G = (V,E,D), whereas V = {vk} describes
the vertices of the graph, E = {ej} corresponds to directed edges
modeling the flow of objects in the graph, and D = {dj} is an
additional set of directed edges introducing dependencies in the
graph. Similar to dataflow programming and stream processing, the
nodes in the graph describe operations that are applied to objects that
travel along the edges E of the graph. Dependencies D introduce
restrictions on the order of the operations. Alongside the multigraph,
sets of supported operations R and object types O are needed to de-
scribe the procedural generation. Both R and O may differ strongly
between generation methods and implementations of those methods.

An edge e = (vs, vd, Oe,me) is an ordered quadruple, connecting
a source vertex vs ∈ V to a destination vertex vd ∈ V , and defines
a path an object can take through the graph, i.e., there is a possibility
for vs to output an object that will be input to vd. Oe ∈ O defines
the set of objects that can travel along the edge, i.e., objects that may
be input to vd. me is called the multiplicity of the edge, describing
the number of objects that will move over an edge concurrently
after a single invocation of the operation associated with node vs. A
multiplicity set to a static number indicates that a specific number of
objects will always be generated by the node; / indicates that either
0 or 1 object will be generated, and ∗ indicates that an arbitrary
number of objects can be generated (including 0). The source vertex
for an edge shall be given by s(e) = vs, the destination vertex, by
d(e) = vd, and its multiplicity, by m(e) = me.

A vertex v = (r, (p1, · · · , pn)) is described by an operation r ∈ R
and a list of parameters (p1, · · · , pn), which influence the operation.
Whenever an object moves over an incoming edge to v, the operation
r is invoked on that object with the node’s parameters; we say the
object has been consumed by the node. Every invocation might
output any number of objects; we say the objects are produced by
the node. The types of objects consumable by an operation r ∈ R
and the types of producible objects can be defined by a left-total,

binary relation IOr ⊆ O ×O. The operation defines the number of
outgoing edges of the node; for each possible output, an edge must
exist in the graph.

Examples In a shape grammar, a translation operation in R3

moves an object along a direction given by three parameters. It
consumes and produces a single object in R3. A translation node
has one incoming edge and one outgoing edge, each being limited
to the same set of objects. In a string rewriting system, an operation
rewrites characters defined in the alphabet Σ according to matching
rules R. It consumes a character and outputs as many characters
as there are parameters. Both incoming and outgoing edges are
limited to single characters. The outgoing edge multiplicity is equal
to the number of parameters. A triangulation operation consumes
any flat polygon, takes no parameters and triangulates the interior of
the polygon. The associated node has a single input edge, which is
limited to polygons, and a single outgoing edge with multiplicity ∗,
which allows for triangles only. A random path operator choses
randomly between different outgoing edges with the parameters
describing the likelihood for each option. A random path node
consumes any object type and produces objects of the same type.
For every likelihood given as parameter, an outgoing edge with
m = / exists.

A dependence edge d = (vs, vd) is an ordered pair, connecting a
source vertex vs ∈ V to a destination vertex vd ∈ V , and defines
a secondary graph on top of V . Dependencies model side effects
in the operator graph that cannot be captured by E. Such side
effects describe influences the operation from the source vertex vs
can have on the operation of vd. For example, the generation of
a wall (vs) may limit an operation vd the controls the growth of a
tree. Dependency edges can be seen as additional parameters to the
operation of vd, which are set up dynamically, as other objects move
through the graph. If a dependency edge exists between nodes, the
system executing the operator graph has to make sure that there is
no possibility that any objects being present somewhere in the graph
might still go through vs, before executing objects waiting at vd. In
the example above, this means that the generation of trees has to
wait, until all walls have been generated.

For a vertex v, the incoming edges shall be given by in(v) = {e ∈
E|d(e) = v} and the outgoing edges by out(v) = {e ∈ E|s(e) =
v}. A vertex with in(v) = ∅ is called source node, and a vertex with
out(v) = ∅ is called terminal node. Source nodes correspond to
operations that start the procedural generation by introducing initial
objects into the graph. Terminal nodes correspond to operations
that end the generation process, by discarding objects or outputting
objects as part of the generated model.

Fractal Example Consider the recursive generation of the Menger
sponge, shown in Figure 2, with the operator graph in Figure 3. The
generation can be completed by using axis-aligned boxes with a
recursion counter: The required objects can be given by the tuple
o = (s, t, c), where s ∈ R3 is the dimension of the box, t ∈ R3,
its position, and c ∈ N, the recursion counter. The generation uses
six operations: one split operation for each dimension, splitting a
box into three boxes whose relative sizes are given as parameters,
an operation increasing the recursion counter, a conditional opera-
tion comparing the recursion counter to the parameter and deciding
between two different generation paths, an operation that discards
an object, and an operation that adds the object to the generated
model. The generation starts at the blue source node with a single
outgoing edge with a multiplicity ∗, indicating that any number of
initial boxes might come from the source node. Each box is split
along the X , Y , and Z-axis, creating three sub-boxes each, leading
to a grid of 3 × 3 equally sized boxes. Seven of these boxes are



Figure 2: The Menger Sponge generated by a recursive generation
program stopped at level 3.
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Figure 3: The operator graph for the Menger Sponge. The blue node
is the source; orange nodes are terminals. Each node is annotated
with its operation and parameters. For each edge, its multiplicity is
given: ∗ indicates a variable number of objects can be produced, /
stands for 0 or 1 produced object. No dependencies are present.

discarded, and the remaining twenty boxes are split anew, unless
a fixed number of recursions have been carried out. The recursive
nature of the generation is captured by a cycle in the graph. The
graph does not contain additional dependencies.

L-System Example An L-system is defined over an alphabet S,
axioms a ∈ S and production rules P , which take a character s ∈ S
and map it to a string (s1, . . . , sn) of characters si ∈ S, see Lin-
denmayers’s original algae example in Figure 4(a). The result of an
L-system evaluation is a string of characters after a certain number
of iterations. A system for L-system evaluation can be described
as follows. An object is modeled by a character, its position on
the string and a rewrite counter: O = S × N2. Only a single pa-
rameterized rewrite operation is needed, which produces one object
(character) for each parameter. It also increases the recursion count
and updates the string position. As the string position depends on
the operations that are carried out for all characters to the left, we
compute a conservative string positions and leave empty spaces in
the string, i.e., the operator multiplies the position of the input with
the maximum number of characters that are produced by any oper-
ator. After the desired number of rewrites, a compaction operator
removes the empty spaces and forms the output string. To stop the
generation, a conditional operation is required, see Figure 4(b).

Every production rule, the recursion check, and the compaction step
translate into a node in the operator graph. As the compaction re-
quires all other objects to exist first, a dependency edge is introduced
in the graph. This dependency is a typical example of a side effect.
The operator graph does not only contain the original L-system,
but describes a full system that enables the interpretation of the
L-system. For example, if one would want to describe the parallel
L-system derivation by Lipp et al. [2010], one would introduce a
prefix sum node (replacing our compaction step) within the recursive
cycle. Note that the axioms themselves are not part of the operator
graph and thus it describes all possible algae generations from any
combinations of starting symbols and not only a static scene. Further
examples can be found in Appendix A.

Alphabet: A, B
Axiom: A
Production rules:
1: (A -> AB)
2: (B -> A)

(a) L-system

*

(Rep,(A,B))

(IfCntGT,(N))

(Compact,())

/

(Axioms,())

(Rep,(A))

*

12

/

/

(b) Operator Graph

Figure 4: Simple algae L-system and its translation to an operator
graph. Red edges indicate dependency edges.

4 Operator graph scheduling

Previous approaches proposed very specific ways of running proce-
dural generation on the GPU, trying to include different aspects of
best practices in GPU programming. Foremost, this includes (1) sup-
plying enough parallelism to fully utilize the GPU by load balancing
between the execution cores, (2) avoiding thread divergence, and (3)
avoiding costly memory transactions. While previous approaches
try to achieve these goals in very different ways, we generalize these
techniques using the concept of the operator graph.

From an operator graph view, a system for procedural generation on
the GPU provides a user with the definitions of supported operations
R and objects O. The user specifies the generation process in
a textual or graphical way. This step corresponds to setting up
the operator graph and handing it to the generation system. The
system must be able to manage objects that are produced throughout
the generation process, storing them in one of the memory spaces
available on the GPU. For every operation supported by the system,
a GPU implementation must exist. Additionally, the runtime system
must provide the parameters to the operations and consider the
dependencies between graph nodes. The decisions about which
objects should end up in which memory space and which operations
should be executed when and on which processing cores can have a
significant influence on the performance. Inspired by the naming in
Halide [Ragan-Kelley et al. 2012], we call the sum of these decisions
the schedule of the generation.

4.1 Scheduling strategies

In terms of the operator graph, the procedural generation is com-
pleted, when all objects have moved through the entire graph. The
time spent on the generation can be divided into time spent on indi-
vidual nodes and edges of the graph. The cost of a node corresponds
to the time spent on the execution of operations. Operations are
executed quickly, if (1) a sufficient number of them can be executed
in parallel, (2) no divergence occurs, i.e., all GPU cores are active,
and (3) operations executing on the same SIMD cores require the
same low-level instructions. The cost of an edge can be seen as time
needed for scheduling, including assigning cores to operations as
well as loading and storing of objects. Ideally, scheduling decisions
take as little time as possible and lead to divergence-free parallel
execution.

Dynamic scheduling However, in real systems, these are oppos-
ing goals. To create divergence-free parallel execution, a scheduler
needs to collect objects that are to be executed by the same operation.
As new objects can be generated during any other operation, on any
multiprocessor, there is no way around global, device-wide com-
munication. Such communication is only possible via slow global
GPU memory. A global sorting or grouping mechanism for objects
that are to be processed by the same operation is ultimately neces-



sary. Thus, objects must be transferred to and from global memory
between the execution of operations. In the worst case, the sorting
or grouping mechanisms involve device-wide synchronization. The
combination of these steps can be very costly in comparison to the
execution of a single operation, possibly increasing the cost of edges
way beyond the cost of nodes. However, the cost of nodes will be
low, as operations are executed divergence-free, and load balancing
occurs over the entire device. As these scheduling decisions deter-
mine when and where operations are executed during runtime, we
call them dynamic.

Static scheduling The most time-efficient way of scheduling is
to avoid any decision making during runtime. The only possibility
to achieve such a static scheduling decision on current hardware
is to continue using the resources already allocated for a previous
operation, fusing an operation with its successor, i.e. an object
produced by a thread is stored within the registers allocated to this
thread and the subsequent operation is executed by the same thread.
If a node with multiple outgoing edges should be processed by
a single thread and scheduling is completely static, the execution
of all child nodes can only be serialized. This does not allow for
load balancing and reduces the amount of available parallelism. At
the same time, the chances of divergence rise, if the number of
produced objects depends on the input object. However, there is
essentially no overhead associated with static scheduling. Note that
other scheduling systems, especially, if they work on entire kernels,
call this kind of static scheduling kernel fusion.

Static and dynamic scheduling decisions represent extremes along
a continuum of schedules. For example, instead of going to global
memory for a dynamic scheduling decision, one can also involve lo-
cal shared memory, combining information from all threads running
on the same multiprocessor. This will generate a faster dynamic
scheduling decision with less overhead and fewer options in terms of
load balancing and divergence avoidance. However, there is usually
a pivotal point on this continuum that separates dynamic schedul-
ing decisions, involving decisions made during runtime, from static
scheduling decisions, involving only resource reuse and a predefined
execution order. In the interest of brevity, we distinguish only dy-
namic and static scheduling decisions in the following discussions.

4.2 Graph partitioning

While scheduling decisions can either be dynamic or static, there
is no need to make scheduling decisions uniformly throughout the
generation process. It is rather possible to decide for each opera-
tor graph edge if it should involve a dynamic or static scheduling
decision, adjusting the schedule according to a desired execution
pattern. Given that the commands executed for individual operations
do not change, the schedule is actually (for a given GPU) the only
factor influencing the execution time of a production. Distinguishing
between dynamic and static scheduling decisions, it is possible to
describe a schedule as a partitioning of the operator graph. Edges
within a single component of the partition involve static scheduling
decisions only. Edges between different components denote dy-
namic scheduling decisions. We define a schedule S as a partitioning
of V into non-empty subsets. We call each component Si ∈ S an
execution group. Note that, by definition, S itself is also an execu-
tion group. Due to the way scheduling decision can be made, certain
conditions must hold for each execution group for the schedule to
be valid.

Condition 1 There can only be a single node vr ∈ Si, for which
incoming edges have source nodes outside Si. This condition makes
sure that each component has a single node vr from which the
execution of the component starts. All other nodes in the component
can be executed in a statically defined order.

(a) (b) (c) (d)

Figure 5: Simplified Menger Sponge operator graph partitions.
Blue edges are dynamic, green edges static, execution groups are
outlined in grey. (a) Turning every node into an execution group,
yields completely dynamic scheduling. (b) A large execution group
with mostly static edges. (c) Rules turned into execution groups.
(d) Invalid partitioning (red) having multiple nodes with dynamic
incoming edges or disconnected nodes.

Condition 2 There must be a path from the starting node vr to each
other node vn ∈ Si of the execution group that only contains nodes
of Si. This condition guarantees that a static schedule involving all
nodes in Si can be defined. All edges that are used in the above
definition shall involve static scheduling decision and shall be called
static edges.

Condition 3 An execution group is not allowed to contain cycles,
besides cycles that include vr . This conditions prohibits recursions
within a component, which might lead to unpredictable time and
resource requirements within statically scheduled nodes. If a cycle
is formed with vr , the incoming edge at vr is made dynamic, and
the cycle can be supported via dynamic scheduling.

Condition 4 Dependency edges are only allowed between different
execution groups and not within an execution group. This condition
is necessary, as context sensitivity is usually only supported between
dynamic scheduling decision, i.e., the scheduler must be able to
check if all sources of the dependency have been executed, before
the dependent node can be executed.

Examples We revisit the Menger sponge, as shown in Figure 5. If
all edges are made dynamic (a), a large number of small execution
groups is generated, possibly leading to large scheduling overhead.
As the graph contains a single cycle, nearly the entire graph can be
turned into a single execution group (b). The edge creating the cycle
becomes a dynamic edge. The first node in a large execution group
is the only one with incoming edges from outside of the execution
group. A schedule like this only draws parallelism from the recursion
and the source node. A mixture of dynamic and static edges creates
execution groups of different sizes (c). A setup like this might be a
good compromise between dynamic and static scheduling. Not all
possible partitions are valid; unconnected nodes or multiple nodes
with incoming edges outside of the execution group yield an invalid
schedule (d).

Operator graph scheduling allows modeling previous work as dif-
ferent partitioning schemes, independent of the low level details of
the implementation: Sequential rewriting and shape grammar evalu-
ation algorithms, such as the approaches by Lacz et al. [2004] and
Lipp et al. [2010], yield execution groups Si ∈ S of single nodes,
|Si| = 1. Thus, they make scheduling decisions after every single
operation. While they get good load balancing and a high degree of
available parallelism, their scheduling overhead is large. GPU shape
grammars [Marvie et al. 2012] put the entire graph into a single
execution group S = V . Thus, they can only draw parallelism from
the axioms and face problems with divergence, when generating
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different buildings. PGA [Steinberger et al. 2014b] partitions the
graph according to the rules written by the designers. Thus, their
performance heavily depends on the way the rule sets have been
written and can suffer the same problems as the other approaches.

4.3 Execution group matching

There is another factor influencing performance that can be described
using the operator graph. Dynamic scheduling combines objects
that are to be executed by the same execution group to generate
divergence-free parallel execution. If the number of objects for one
execution group is too low, the execution will suffer underutilization
or divergence. To mitigate this issue, we propose execution group
matching in combination with dynamically loading parameters.

To describe execution group matching, we define operator homo-
morphism, which applies to operator graphs that are compatible in
terms of structure and operations and, thus, can be described by
the same parameterized execution group: Let G1 = (V1, E1, D1)
and G2 = (V2, E2, D2) be two different operator graphs with
e1 ∈ E1, e2 ∈ E2 and d1 ∈ D1, d2 ∈ D2. These operator graphs
are operator homomorphic, iff there is a bijective homomorphism
fh : V1 → V2, which fulfills the following conditions:

∀e1 ∃e2 : fh(s(e1)) = s(e2) ∧ fh(d(e1)) = d(e2) (1)
∃e1 ∀e2 : fh(s(e1)) = s(e2) ∧ fh(d(e1)) = d(e2) (2)
∀d1 ∃d2 : fh(s(d1)) = s(d2) ∧ fh(d(d1)) = d(d2) (3)
∃d1 ∀d2 : fh(s(d1)) = s(d2) ∧ fh(d(d1)) = d(d2) (4)

fh ((r1, p1)) = (r2, p2) −→ r1 = r2, (5)

i.e., if there are matching operations in all nodes in both graphs and
edges that connect those nodes in the same way.

If the graphs of two execution groups are operator homomorphic,
they can be described by a single parameterized piece of code, con-
structed from the operations used in either graph. This means that
all possible ways through two operator homomorphic graphs can
be described by the same code. This concept is not only applicable
to two execution groups, but can be extended to multiple execution
groups, combining all of them. The implication is that more objects
can be combined for this parameterized execution group and thus
executed more efficiently. However, as the parameters of the indi-
vidual operations might differ, the scheduling system must provide
the parameters dynamically to the executing objects.

In addition to easing the process of finding a sufficient number of
objects for efficient execution during dynamic scheduling, a homo-
morphic execution group is represented using a single GPU function
instead of multiple. This might have an additional positive effect on
the cost of dynamic scheduling. Depending on the implementation

of dynamic scheduling mechanism, fewer execution groups might
reduce the number of grouping structures or queues and thus reduce
the time spend on searching through this structure. Therefore, execu-
tion group matching can potentially reduce the overhead of dynamic
scheduling.

5 Compiler Pipeline

To complete our approach, we describe a state-of-the-art procedural
generation runtime system and an auto-tuner for the selection of
schedules. These components close the loop of our compile pipeline,
see Figure 6. As dynamic scheduler, we use the task scheduling
framework Whippletree [Steinberger et al. 2014a]. Whippletree
works around the definition of procedures and tasks. Procedures are
function-like entities that take tasks as input. Tasks are collected
in queues in global GPU memory. When there are enough tasks
available for parallel execution on a multiprocessor, Whippletree
executes them together, increasing the chances for a divergence-free
execution. In our terminology, tasks correspond to objects moving
through the operator graph and procedures are operations or execu-
tion groups. Whippletree makes dynamic scheduling decisions as to
when and on which multiprocessor these execution groups should be
executed. Note that Whippletree has been used for shape grammar
scheduling before. However, we do not use Whippletree’s shape
grammar implementation, but rather generate a schedule directly
from an operator graph and our own operation definitions.

5.1 Procedural generation system

We implemented a limited number of operations, which are similar
to the shape grammar operations available in CGA shape, as well as
operations for L-systems and functional languages for procedural
generation. To use Whippletree for dynamic scheduling, we define
a Whippletree procedure for every execution group in the operator
graph. The procedure is built from operations used in the execution
group, together with the parameters specified. These parameters
can either be predefined values or drawn from random distributions.
Within an execution group, we serialize the execution of all contribut-
ing operations, implementing static scheduling decision. Serializing
the graph in a depth first manner, we make sure that the number of
temporary objects that need to be kept in registers is low. Whenever
a dynamic edge is reached, we hand the object over to the Whipple-
tree scheduler, which transfers it into its own grouping mechanism
and load balances its execution among the entire GPU.

We require a way to supply dynamic parameters to operator homo-
morphic execution groups. For this purpose, we use a parameter
table stored in GPU memory. This table is used to look up the param-
eters of the involved operations based on a unique identifier that we
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Figure 7: Performance results in ms for all 40 possible schedules for the Menger Sponge test case with different object counts (sorted by
performance on the GTX 630). Even for such a small rule set, the performance difference between schedules can vary from a factor of two to
five. Note how the relative performance of the schedules changes between object counts and GPU.

store alongside each object. During execution, each thread looks up
the parameters associated with its object. Using the texture cache for
parameter loads reduces the overhead of these additional memory
transactions. As a subset of the parameters might be identical for
all operator homomorphic execution groups, we use the look-up
table only for those parameters which actually differ. The remaining
parameters are statically included during compilation.

Our implementation also supports context sensitivity, i.e., depen-
dency edges. Dependencies always involve two operations. The first
operation (source) adds an object into a spatial data structure and
adds a customizable id to that object. The second operation (desti-
nation) allows to query an object against the objects stored in the
spatial data structure. If there is an overlap between the query and
the objects of a given id in the data structure, a different outgoing
edge is chosen than if there is no overlap. Scheduling needs to make
sure that all source operations are completed, before the destination
nodes are executed. Whippletree does not allow to set up these
dependencies directly. However, we can separate the execution in
multiple phases with global synchronization barriers in between by
executing a sequence of Whippletree programs, one for each phase.
Whenever there are dependencies in an operator graph, we make
sure that source and destination nodes end up in different phases,
while keeping the number of phases minimal.

5.2 Scheduling optimizer

The fastest schedule for a given operator graph might depend on
the GPU architecture and the number of objects generated by the
source node. Depending on the number of cores, a GPU requires
more or less parallel workload to work efficiently. A larger number
of initial objects provides more parallelism, and, thus, less dynamic
scheduling is necessary to create enough parallel workload. When
trying to find the best schedule, these factors must be considered.

The number of different graph partitions (and different schedules)
for an operator graph with |E| edges is 2|E| (every edge can either
be dynamic or static). While a large number of these schedules
might achieve similar performance, the difference between a good
schedule and a bad schedule can—according to our experiments—be
up to two orders of magnitude for large operator graphs. Even for
small graphs, the best performing schedule varies between object
counts and GPU type, as shown in the example in Figure 7. This
large variance shows that for modern GPUs, it is difficult to predict
what makes a schedule good or bad. Thus, it is essential to provide
means to find the best schedule for any given operator graph, object
count and GPU.

With the goal of finding the most efficient procedural generation
system, we search for the schedule that minimizes execution time.
To this aim, we implemented an auto-tuner that searches for the best
schedule for a given operator graph. It is intended to compute good

schedules for use cases such as video games, movie production or
inverse procedural modeling. As a baseline, it uses an exhaustive
search algorithm, generating and evaluating all valid schedules for a
given set of source objects.

Our compiler pipeline starts with a rule set written in a syntax similar
to CGA shape or an L-system and internally translates it into an
operator graph. To perform this translation, the compiler requires
a definition of supported object types, operations, and input-output
relations (cf. O, R, and IO in section 3). We use C++ class spec-
ifications for object types and C++ source code for the operations
and input-output relations. Internally, our compiler represents all
possible partitions as a bit sequence (one bit per edge). After a
partition is selected, it is checked for validity according to the con-
ditions given in section 4.2. If it is valid, we search for operator
homomorphic execution groups and identify common parameters.
Finally, the compiler generates Whippletree procedure code for all
execution groups, including the CUDA/C++ code for the involved
operations. It also generates the parameter table for the procedures
and inserts the corresponding load instructions into the CUDA/C++
code. The generated code is compiled, and the auto-tuner evaluates
its performance for a given set of target input objects.

Even after restricting the search space to valid partitions, it is still
not practical to perform an exhaustive search through the remaining
number of possible schedules for larger graphs. Thus, we introduce a
set of heuristics based on parallel programming principles translated
to choices in the operator graph. These heuristics work by setting
edges as static or dynamic, according to certain local characteristics
of the operator graph. Naturally, fixing an edge (to either static
or dynamic) reduces the search space in half. Although heuristics
significantly reduce the search space, there is no guarantee that the
best schedule is found. However, we have collected strong evidence
that the presented heuristics work well for a wide variety of cases.

5.3 Sequence fusion heuristic

Nodes with a single outgoing edge of multiplicity m = 1 do not
introduce any parallelism. If no parallelism is introduced, there is
no gain for load balancing, and a dynamic edge would only increase
scheduling overhead. Thus, the sequence fusion heuristic H1 sets all
edges in Eh,1 to static:

Eh,1 = {e|m(e) = 1 ∧ |out(src(e))| = 1}.

For example, consider the sequence of a Translate, Rotate and Scale
operation, as shown in Figure 8. For simplicity, assume that all oper-
ations as well as a dynamic scheduling decisions take equally long.
The operations carried out on different SIMD units and cores are
represented as cells of the table. Light cells indicate available cores,
and dark cells indicate that the resource is used. Using static edges
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Figure 10: H3 (a) → (b) makes sure small
execution groups are not split apart and thus
reduces dynamic scheduling overhead.

between those operations will result in a single thread executing all
three operations, with virtually no cost for scheduling. Dynamic
edges, in this case, might result in the operations to be executed
with different threads. However, no more than a single thread will
be active with those operations at any point in time. Additionally,
the overhead for two dynamic scheduling decisions increases the
overall execution time. Resource usage (darker cells) is reduced
from seven to three, and the execution time is reduced from five to
three by applying the heuristic. Intuitively, static edges should lead
to a better performance in this case.

Note that applying this heuristic might link two dependent operations
to each other with a sequence of static edges. For example, imagine
a dependency edge between the Translate and Scale operation in the
previous example. One of the static edges needs to be turned into a
dynamic edge to yield a valid schedule. In our implementation, this
is taken care of by the optimizer, which validates each application
of heuristics. It would reject the static edge, when the heuristic is
applied to the last edge in the sequence, as it would connect the
dependencies to each other.

5.4 Divergence avoidance heuristic

Edges with multiplicity m = / have a high change of introducing
divergence. Consider an If operation or an operation that chooses
one of the outgoing edges at random. For those operations, different
objects have a high chance of choosing different edges for execution.
If these edges are made static, thread divergence will occur. Thus,
the divergence avoidance heuristic H2 sets all edges in Eh,2 to
dynamic:

Eh,2 = {e|m(e) = /}.

For example, consider a conditional operation executed on two cores
of the same SIMD unit, as shown in Figure 9. Each conditional
branch is followed by a sequence of operations. If static scheduling
is used, and objects choose different edges, half of the cores will not
run code for the entire execution. Using dynamic edges, however,
will only introduce a small amount of divergence, when starting the
dynamic scheduling. The execution of the following operations can
then be carried out in parallel on different SIMD units, avoiding
divergence and speeding up the execution (eight time units vs six
time units). Also, the overall resource usage (darker cells) is reduced
from 16 to 15. Intuitively, dynamic edges will allow to reduce
divergence, introduce parallelism and speed up the execution in this
case.

5.5 Execution group size heuristic

In contrast to edges that might or might not be taken, there are
those nodes that have edges with a fixed multiplicity, i.e., there
will always be a fixed number of objects created by an operation.
Examples include Subdivide or ComponentSplit. If the outgoing
edges of such a node are set to static, combining a node with its
children into the same execution group will prevent divergence, but
potential parallelism will be lost. At first sight, it may appear that
these outgoing edges are good candidates for dynamic edges to
increase parallelism. However, one has to consider the overhead
of dynamic scheduling. This is particularly true, when the edges
following the successors are dynamic, too, creating sequences of
dynamic scheduling decisions. In this case, the scheduling overhead
will outweigh the gains of parallel execution. Thus, the execution
group size heuristic H3 enforces a minimum execution group size
by greedily setting edges with a constant multiplicity to static until a
certain execution group size t is reached.

∀Si ⊆ S : |Si| ≥ t (6)

For example, consider a Subdivide operation creating three objects,
each followed by a single node and a dynamic scheduling operation,
as shown in Figure 10. If the edges are set to dynamic, three dy-
namic scheduling operations are carried out, and the following nodes
are distributed among different cores. In this way, parallelism is
generated, but with a high amount of scheduling overhead. However,
if the edges are set to static, all nodes are executed on the same core,
and the scheduling overhead is greatly reduced. While the overall
execution is taking slightly longer (one time unit), the consumed
resources (darker cells) are nearly halved from thirteen to seven.
As long as there is a sufficient amount of parallelism available, the
reduction in resource usage will lead to a faster generation process.
In our experiments, we used a minimum execution group size t of 5.

6 Results

To evaluate our approach, we used test cases from shape grammars,
L-systems, and Monte Carlo procedural modeling approaches as
shown in Figure 11 and Figure 1. The test cases include a variety
of sizes and include results for different numbers of initial object
counts. As test system, we used an Intel i7 4820K with 16GB RAM
and an NVIDIA GTX 780Ti.
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Figure 11: The evaluation test cases include L-systems (a), Monte
Carlo procedural modeling (b and c), and shape grammars (d-f).

6.1 Evaluation of the heuristics

To evaluate the heuristics on test data sets of a non-trivial size, we
use the following approach: First, we identify all edges in a given
operator graph for which a heuristic does not apply and randomly set
each of those edges to be either dynamic or static. Second, we apply
the heuristic to the other edges and run the schedule for a given set
of input objects, recording their performance. Third, we invert those
edges to the opposite of the heuristic and run the schedule again on
the same input set. We repeat the entire process, until we arrive at a
predefined number of samples. For the pairs of samples, we run a
paired Student’s t-test to check if there is a difference between the
performance of the schedules with activated heuristic and inverted
heuristic. To determine the number of samples for achieving a 5%
error margin and a confidence interval of 95%, we created 384 pairs,
following the sample size guidelines [Krejcie and Morgan 1970].

In each of the test cases, we make sure that the pattern occurs on
which the heuristic is based. We used Suburban House for H1, as
it is rather small and offers multiple edges that match the heuristic,
Commercial for H2, as it chooses randomly from different window
styles, and Balcony for H3, as it has many nodes with only few
outgoing edges. The t-test results for all three evaluations are shown
in Table 1. As can be seen, all heuristics had a statistically significant
influence on performance for all axiom counts. Altering 19.7%, 4%,
and 41% of edges boosted performance up to 30%, 12%, 100%, on
average, for H1, H2, and H3, respectively, indicating that the chosen
edges actually have a large impact on performance. The heuristics
seem to work especially well for larger object counts. Overall, we
argue that all three heuristics seem to be a good starting point for
optimization, reducing the search space significantly.

Table 1: The heuristics affected 15, 6 and 43 edges out of the 76, 150
and 104 edges in the respective operator graphs. All three heuristics
had statistically significant influences on the performance (p value
and t for the paired Student’s t-test). H is the mean generation time
(with standard deviation) in ms with heuristic on, while ¬H shows
the same results with heuristics off. For small object counts (Obj),
up to 89% (perc) of pairs benefited from the heuristic. For larger
object counts, the heuristics work even better.

Test Obj t p H ¬H perc

H1
15/76 edges

1 -8.36 <.001 0.58 (0.65) 0.61 (0.68) .81
64 -51.38 <.001 1.13 (0.72) 1.36 (0.72) .99

128 -74.36 <.001 1.73 (0.70) 2.16 (0.69) .99
256 -94.54 <.001 2.95 (0.73) 3.81 (0.72) 1.00

H2
6/150 edges

1 -18.20 <.001 0.53 (0.09) 0.58 (0.08) .87
64 -30.76 <.001 0.84 (0.16) 0.94 (0.15) .94

128 -34.85 <.001 1.16 (0.29) 1.29 (0.28) .95
256 -35.86 <.001 1.79 (0.56) 2.01 (0.53) .96

H3
43/104 edges

1 -2.87 .004 0.51 (0.16) 0.54 (0.04) .89
64 -27.87 <.001 0.65 (0.17) 0.90 (0.07) .98

128 -55.96 <.001 0.78 (0.16) 1.33 (0.13) 1.00
256 -94.96 <.001 1.09 (0.16) 2.19 (0.25) 1.00

6.2 Runtime performance

To relate our approach to previous work, we ran the Tree 4,3 test
case from GPU Shape Grammars [Marvie et al. 2012], the Tree
8,3, Overview and Skyscrapers test cases from PGA [Steinberger
et al. 2014b] as well as the MC Spaceship and MC Skyscrapers from
Stochastically-Ordered Sequential Monte Carlo [Ritchie et al. 2015].
We include their performance numbers for CPU and GPU ap-
proaches (adjusted for hardware differences). Additionally, we
compare how the scheduling strategies followed by previous work
introduced in our scheduler perform compared to the best schedule
found by our auto-tuner. Rewriting approaches (RW), like the ones
by Lacz et al. [2004] and Lipp et al. [2010], correspond to execution
groups of size 1 and all parameters being stored in the parameter
table. GPU Shape Grammars [Marvie et al. 2012] are represented
by a schedule of a single execution group with all parameters being
static (SGL). To represent PGA [Steinberger et al. 2014b], we used
execution groups according to the rules specified in the shape gram-
mar rule set and again provide all parameters as statics. For unbiased
evaluation, we let an external expert on shape grammars write those
rule sets for us (DGN). We ran our optimizer in four different setups:
random search (OPTS), search with heuristics (OPTH ), and both
variants with execution group matching (OPT·,M ).

The performance results are shown in Table 2. SGL performs well
for small operator graphs and large object counts, as there is a
sufficient parallelism available, and scheduling overhead is reduced
to a minimum. Additionally, there is a low chance of divergence for
such small operator graphs. RW introduces the most parallelism, but
also has the highest scheduling overhead. Thus, it performs better,
when there are few initial objects for which parallelism must be
generated quickly. DGN leads to more balance between scheduling
overhead and the ability to generate parallelism. It works well
for test cases which are above a certain size, outperforming both
other approaches. In case of smaller test cases, DGN is, however,
outperformed by SGL. Looking at all three approaches, we can see
that there is no single strategy that always performs best. For the
smaller test cases, the auto-tuner can search the entire space. Thus,
OPTS slightly outperforms OPTH as it tests every single schedule.
For the larger test cases, a fully random search is less likely to
pick good schedules, thus the heuristics guided search most often



Table 2: Evaluation results in ms for test cases with different number of edges in the operator graph (Edges), objects counts (Obj), and number
of terminals (Term) for various partitioning schemes. Previous implementations are included in terms of CPU and GPU generation time
(performance extrapolated from original work using GPU FLOPS ratio). While a single execution group (SGL) performs well for small graphs,
it is not well suited for large graphs. The rewriting approach (RW) behaves in the opposite way. The approach using the rules as execution
groups (DGN) forms a trade-off between the two. Our optimizer using a random search (OPTS), heuristic search (OPTH ), and with execution
group matching (OPTS,M , OPTH,M ) always find a better or equally good schedule. Time used for auto-tuning is additionally given; for the
first three test cases all possible schedules can be tested. For the following test cases we sampled a maximum of 1000 schedules.

Scene Edges Obj Term CPU GPU SGL RW DGN OPTS OPTS,M OPTH OPTH,M

Overview1 9 38000 0.91M 996 48.24 1.56 5.24 1.75 1.62 1m 1.56 1m 1.76 1m 1.74 1m
Simple House 11 4096 1.48M 3.23 6.36 3.59 2.86 3m 2.81 3m 2.93 1m 2.91 1m
Menger Sponge 3 17 256 2.05M 7.28 2.87 2.87 2.28 10m 2.27 10m 2.30 2m 2.31 2m

3D Tree 12,2 35 64 0.65M 1.29 3.89 1.41 3.27 5h 2.99 5h 1.26 2h 1.28 2h
3D Tree 4,32 35 1 283 10.06 0.10 0.50 0.14 0.21 4h 0.21 4h 0.09 57m 0.09 50m
3D Tree 8,31 35 1 23K 3.71 0.20 1.34 0.36 0.32 4h 0.35 4h 0.19 1h 0.19 1h
MC Spaceship3 51 16384 0.40M 4996 1.48 5.47 2.77 1.96 6h 1.91 5h 1.55 4h 1.48 4h
Skyscrapers1 61 529 1.84M 516 22.51 12.10 13.99 6.81 4.15 7h 4.23 7h 4.64 7h 4.52 7h
MC Skyscrapers3 63 512 1.02M 818 65.6 6.11 5.61 4.00 7h 4.11 7h 4.80 7h 4.57 7h
Suburban House 76 256 0.60M 14.54 5.75 4.08 2.74 11h 2.45 10h 1.95 8h 1.87 8h
Balcony 104 256 0.18M 4.99 3.57 2.16 1.18 7h 1.16 7h 0.75 9h 0.76 8h
Commercial 150 256 0.14M 7.58 3.20 2.68 1.06 7h 1.06 7h 1.04 6h 0.96 6h

1 from [Steinberger et al. 2014b], 2 from [Marvie et al. 2012], 3 from [Ritchie et al. 2015]

achieves better results in less time. Also, execution group matching
usually achieves slightly better results while at the same time reduces
compile time. Overall, OPT always picks the best option, boosting
performance by up to 14.4× compared to SGL, 7.1× compared to
RW, and 2.8× compared to DGN. On average, OPT is better by
3.9×, 3.6×, and 1.8×, respectively. The larger the operator graph
gets, the larger the difference becomes. This points towards the fact
that efficient scheduling for complex problems cannot easily be done
by hand. Also, as procedural worlds are growing in size, the gains
of an auto scheduler grows.

As the operator graph can be applied to different procedural ap-
proaches, we used it for L-system generation, shape grammars and
Monte Carlo procedural modelling. GPU Shape Grammar’s 3D Tree
4,3 is constructed by their approach in 40 ms. Adjusting for GPU
differences (time multiplied by peak FLOPS ratio) results in about
10 ms on our GPU. The same test case is completed by OPTH ,M
in 0.09 ms. The comparisons to PGA (Overview, 3D Tree 8,3 and
Skyscrapers) show that OPT finds schedules that are 5 to 30 times
faster than their GPU approach (adjusted for GPU differences) and
up to 100 times faster than their CPU approach. Bringing Monte
Carlo procedural modeling to the GPU, an optimized schedule can
speed up the generation process multiple hundred times compared
to the CPU implementation by Ritchie et al. Considering all results,
it is safe to assume that our compiler finds efficient schedules. The
comparison to previous work suggests that the combination of our
compiler with an efficient dynamic scheduler yields the currently
fastest procedural generation system for the GPU.

However, finding the best schedule for a given operator graph comes
with a cost. For every single schedule tested, we have to generate the
partition from the operator graph, generate source code, compile it,
and run a representative set of procedural generations. The partition
and source code generation takes less than a second, the compilation
takes between 20 seconds and 2 minutes, depending on the operator
graph size. Thus, the optimization for large test cases can take mul-
tiple hours. As the same schedule can be used for different initial
objects, the target scenario for our approach is optimizing a genera-
tion that is used heavily in a production system for different inputs.
For example, we used our approach to optimize the generation for
an entire randomly generated city as seen in Figure 1.

7 Conclusion

While previous approaches to procedural generation on the GPU em-
ployed specialized data structures and techniques, we looked at the
problem from a high-level perspective and introduced the concept
of the operator graph to handle procedural generation methods that
can be described by directed graphs where each operation works on
a single input object. This restriction is most often not an issue in
practice, as language features that require multiple input objects can
often be transformed into sequential subgraphs, as shown in the Ap-
pendix. Using the operator graph as an intermediate representation,
we concisely describe the generation process for all possible input
objects and we draw a connection between a partition of this graph
and how a system can schedule the generation on the GPU.

Additionally, we identify similar structures within the graph and
reduce the complexity of the generated code. Using our compiler
and auto-tuner pipeline, we search the space of all partitions to
find the schedule that performs the generation within the shortest
time. While an exhaustive search of this exponential space is only
possible for small graphs, we proposed three heuristics, which all
increase search performance. Finally, we showed that our approach
can significantly speed up the generation of a variety of common
procedural generation systems. Our auto-tuner is able to increase
performance over hand crafted solutions by up to fourteen times
only by changing the schedule.

Although our heuristics help reduce the search space for finding the
optimal schedule, in practice, the pruned search space of large oper-
ator graphs is still too large to be tested exhaustively. Viewing each
choice for an edge as a binary value, the search for the best schedule
can also be seen as a high dimensional binary optimization problem.
Thus, we will investigate the use of probabilistic search algorithms
like Simulated Annealing and Genetic Algorithms for the specific
problem of finding a good schedule for procedural generation. Also,
we want to extend our concept of operator graph scheduling to other
graph-based traversal problems that can be described by objects mov-
ing through a graph. Our implementation is open source and can be
downloaded from https://github.com/pboechat/OperatorGraph.

https://github.com/pboechat/OperatorGraph
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A Operator graph equivalence to conven-
tional representations

Recall that a variety of methods and systems for procedural genera-
tion can be described using an operator graph. In this section, we
provide additional detail on how the most prominent methods for
procedural generation can be cast into operator graph form.

A.1 L-systems extensions

The operator graph can also be used to describe extensions for L-
systems. Stochastic L-systems allow to specify multiple production
rules for a single symbol, each being chosen with a certain proba-
bility. This behavior can be integrated into the previously described
system by adding an operation that chooses one of its outgoing
edges at random. Context-sensitive L-systems adjust the production
to the characters before and after the input. This behavior can be
modeled with dependency edges, making sure that all symbols for
a certain iteration are processed, before executing the rules for the
next iteration. Another extension to L-systems adds parameters to
characters. Using our definitions, this can be achieved by extending
the object type to O = S × N2 ×<n, with n being the number of
parameters that should be associated with each character.

A.2 Shape Grammars

From a procedural generation point of view, shape grammars, like
CGA shape [Müller et al. 2006], are similar to L-systems. A designer
sets up production rules, which are associated with symbols to define
the sequence of operations to be applied. However, the underlying
objects are shapes (O), and the production rules themselves can be
sequences (or trees) of operations. These operations can usually
be chosen from a predefined set of parameterized operations (R).
As it has been shown before that rule sets of simple, context-free
shape grammars can be described by a direct acyclic graphs [Patow
2012], it is not surprising that our operator graph can be used for
shape grammars. However, our operator graph can model more com-
plex shape grammar operations, like context sensitivity or recursive
productions.

For example, a rule set written in CGA shape to create the Menger
Sponge (see Figure 2 and 3) could look as follows:

1: A -> Split(X){1r: B,
2: 1r: Split(Y){1r: C, 1r: Discard, 1r: C},
3: 1r: B }
4: B -> Split(Y){1r: D, 1r: C, 1r: D}
5: C -> Split(Z){1r: E, 1r: Discard, 1r: E}
6: D -> Split(Z){1r: E, 1r: E, 1r : E}
7: E -> IncRec(){IfRecGreater(4){Term, A}}

This rule set defines five rules, using the Split, Discard, IncRec, and
IfRecGreater operations. 1r represents a relative size parameter.
Translating a rule set into an operator graph is straight forward.
Linking rules with symbols corresponds to setting up edges between
nodes. Also, the nesting of operators within a rule (line 1 and 7
in the example) translates to edges. The operations, including the
parameters, are captured by nodes, translating the rule set above into
the operator graph shown in Figure 3. Note that the operator graph
is to a certain degree independent of the way a designer chooses to
group operators to rules. If the designer split the nested rules in line
1 and 7 into multiple rules, each containing a single operation, the
resulting operator graph would still be the same.

Shape grammars often use random values and randomized rule se-
lection to introduce stochastic variation into the generation process.
Random parameters are simply added as parameters in the opera-
tor graph and can be defined by any random variable distribution.

01: (0,0)
02: vertex
03: (0,0)
04: vertex
05: (0,0)
06: rand2()
07: translate
08: rand2()
09: translate
10: rand2()
11: translate
12: 3
13: polygon
14: 5.0
15: extrude

(a) Stack-based Program

(SelVertex,(0))

(Output,())

(Polygon,((0,0),(0,0),(0,0)))

(Extrude,(5.0))

(Translate,(rand2()))

(SelVertex,(1))

(Translate,(rand2()))

(SelVertex,(2))

(Translate,(rand2()))

(Deselect,())

(b) Operator Graph

Figure 12: A program written in a stack-based modeling language
can be flattened to a data flow graph. As operations used in the
operator graph only consume a single object at the time, operations
which would require multiple inputs are replaced by a single object
and selectors for the sub objects. Note that such a strategy is hardly
ever needed in practice.

Probabilistic rule selection can be added as another node. Finally,
context-sensitivity can either be set up directly between nodes (as
described before), or between entire subsets of nodes. CGA shape
assigns priorities to rules, which translates into execution phases,
i.e., executing all rules with highest priority before rules of the next
lower priority. To model this behavior with dependency edges, we
add dependencies between all nodes of a higher priority to the next
lower priority, forcing all nodes of a certain priority level to be
executed before nodes of the next phase.

A.3 Stack-based Generation

Stack-based generation languages, like GML [Havemann 2005], also
work on simple objects and offer a user a set of operations that can
be applied to objects. As found by Havemann [2005], the similarity
between GML and a generalized data flow network is striking. They
can actually describe the same set of problems. By “flattening” out
the stack (constructing the inputs and outputs of operations from
the stack), it is possible to generate a graph of operations. However,
there is a distinct difference to our operator graph. A single operation
in a stack-based language can pop any number of objects from the
stack. In the operator graph, only a single object (and a set of
parameters) can be consumed by an operation. We do not allow
for a join node that would combine multiple input objects. This
limitation keeps objects independent of each other and allows for
efficient parallel execution.

However, most operations in this type of procedural generation
target a single input object. Additional inputs usually correspond
to parameters controlling the operation itself, e.g., the length of an
extrude or the direction of a translation. Among the few exceptions
that take multiple input objects are operations that combine low-
level objects. For example, a variable number of vertices may be
combined to a polygon. Each of those vertices can come from a chain
of operations. While this is usually not the case, the operator graph
can support such more complex setups, too. For example, instead
of modeling the chains of operations that produce three vertices as
input to a polygon generation, we can start with a polygon of three
vertices and alter one after the other, as shown in Figure 12. In
essence, we serialize operations from previously parallel paths. In
this way, even operations which pop multiple complex objects from
the stack can be represented by an operator graph.


