
Eurographics Symposium on Parallel Graphics and Visualization (2012)
H. Childs and T. Kuhlen (Editors)

Multi-GPU Image-based Visual Hull Rendering

Stefan Hauswiesner, Rostislav Khlebnikov, Markus Steinberger, Matthias Straka and Gerhard Reitmayr

Graz University of Technology, Institute for Computer Graphics and Vision

Abstract
Many virtual mirror and telepresence applications require novel viewpoint synthesis with little latency to user
motion. Image-based visual hull (IBVH) rendering is capable of rendering arbitrary views from segmented im-
ages without an explicit intermediate data representation, such as a mesh or a voxel grid. By computing depth
images directly from the silhouette images, it usually outperforms indirect methods. GPU-hardware accelerated
implementations exist, but due to the lack of an intermediate representation no multi-GPU parallel strategies and
implementations are currently available. This paper suggests three ways to parallelize the IBVH-pipeline and
maps them to the sorting classification that is often applied to conventional parallel rendering systems. In addi-
tion to sort-first parallelization, we suggest a novel sort-last formulation that regards cameras as scene objects.
We enhance this method’s performance by a block-based encoding of the rendering results. For interactive systems
with hard real-time constraints, we combine the algorithm with a multi-frame rate (MFR) system. We suggest a
combination of forward and backward image warping to improve the visual quality of the MFR rendering. We
observed the runtime behavior of the suggested methods and assessed how their performance scales with respect
to input and output resolutions and the number of GPUs. By using additional GPUs, we reduced rendering times
by up to 60%. Multi-frame rate viewing can even be ten times faster.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.1 [Computer Graphics]: Hardware Architecture—Parallel processing I.3.1
[Computer Graphics]: Hardware Architecture—Graphics processors

1. Introduction

Our main application scenario is an augmented reality sys-
tem which allows users to view themselves on a screen from
arbitrary directions. Moreover, the system features a mirror
mode which sets the virtual viewpoint to reflect the user like
a conventional mirror does. This system is suitable for var-
ious mixed reality applications, like a virtual mirror or tele-
conferencing (see Figure 1). As the user immediately sees
the rendering of himself, high rendering performance and
low latency are crucial for a satisfactory user experience.
This is is also important to avoid simulator sickness during
extended sessions. Moreover, user-interaction through ges-
tures benefits from low latency.

In our system, a set of ten cameras is mounted around the
area where the user is allowed to move. The cameras pro-
vide a color video stream. As the user can be segmented
using background subtraction, the image-based visual hull
(IBVH) algorithm can be applied for the purpose of ren-
dering the user from an arbitrary viewpoint. The IBVH al-

gorithm performs a depth map reconstruction directly from
the silhouette images, and is therefore a very lightweight ap-
proach to rendering [HSR11].

The high performance to cost ratio of a single PC equipped
with multiple GPUs makes it an an attractive platform for
such complex interactive visualization tasks. Moreover, data
transfers from main memory to GPUs are fast compared to
network transfers. Several visual hull algorithms have been
modified in order to run on several PCs or GPUs in parallel.
These algorithms usually involve explicit, view-independent
intermediate results in the form of meshes or voxel grids that
can be computed independently before merging them in a fi-
nal step. In contrast, IBVH rendering does not have such a
representation, and is therefore not parallelizable with stan-
dard methods.

The contributions of this paper are three ways of distributing
the workload of an IBVH pipeline over several GPUs. After
analyzing the computation times and data flow of an existing
single-GPU IBVH pipeline, we derive which stages are suit-

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

Figure 1: IBVH rendering of a person in our system. Left:
phong-shaded depth map, right: same depth map rendered
with view-dependent texture mapping.

able for parallelization. We start with a sort-first approach,
which is simple but has drawbacks. Then, we introduce a
sort-last approach by regarding cameras as scene objects. In
addition, we suggest a compact buffer representation that re-
duces the bus traffic. The last approach is a multi-frame rate
setup that decouples the viewing process from the image
generation to achieve high frame rates even for large reso-
lutions. To improve visual quality, we suggest a combined
forward- and backward warping method. We evaluated all
approaches by measuring and comparing runtimes for dif-
ferent configurations.

2. Related work

Extracting geometry from a set of calibrated camera images
when a foreground segmentation is available is a common
technique in computer vision called shape-from-silhouette
(for example, [YLKC07]). When using this information for
display, the process is often called visual hull rendering. Vi-
sual hulls can be reconstructed very efficiently, which makes
them ideal for interactive systems.

2.1. Visual hull rendering

Previous work in the field can be categorized according to
the data representation that is reconstructed from the in-
put silhouettes. Frequently, an explicit data representation,
like meshes or voxel grids is extracted. A voxel-based re-
construction is shown in [NNT07] using shader programs.
Meshes are usually more efficient [Boy03, dAST∗08] for
both reconstruction and rendering.

But also other methods have been developed that do not
have an explicit data representation. CSG-based approaches
use depth-peeling of silhouette cones for correct results
[Li04]. Texture-mapping approaches render the cones and
rely on alpha-tests to carve the final silhouette [LCO06].

[GG07] describe a plane-sweep algorithm to find point-
correspondences on the GPU and use it for triangulation.
While these approaches may be mapped to the conventional
rendering pipeline, they are bound to scale badly with resolu-
tion and depth complexity, as excessive fragment read/write
operations in device memory are required.

When only the rendering of novel viewpoints is required,
and not an explicit reconstruction, the detour of intermediate
geometry can be avoided to reduce latency. To directly create
novel views from silhouette images, the image-based visual
hull (IBVH) [MBR∗00] method was introduced. It involves
on-the-fly ray-silhouette intersection and CSG operations to
recover a depth map of the current view.

Many extensions of the original approach have been de-
veloped. [SSS∗02, FWZ03] extend IBVH with photo-
consistency, resulting in improved quality. [YZC03] use
IBVH and find body parts to improve rendering of convex
parts. [WFEK09, GHKM11] show recent GPU implementa-
tions of the IBVH algorithm and the use of silhouette seg-
ment caching to speed up intersection tests.

2.2. Parallel visual hull rendering

Parallel visual hull rendering is usually performed by using
an explicit data representation. This way it is easier to com-
pute intermediate results in parallel and merge them after-
wards. Often, voxels are used for this [LBN08, TLMpS03,
GM03, WTM06]. However, voxels can not efficiently pro-
vide the desired output resolution for our system and induce
heavy bus traffic between the rendering nodes.

The Grimage system [FMBR04, AFM∗06] utilizes a PC
cluster for visual hull reconstruction. Their method is mesh-
based, which makes it more efficient than a voxel represen-
tation while also being view-independent. However, the ad-
ditional latency that comes from computing an explicit data
representation remains. In this case this amounts to triangu-
lating the viewing edges.

The IBVH algorithm does not have an explicit data repre-
sentation and is therefore harder to parallelize on multiple
GPUs or CPUs. The work of [FLZ10] utilizes two GPUs to
compute two images separately: one for each eye in their
stereo setup. In contrast, the goal of our work is to distribute
the rendering of one image over multiple GPUs.

2.3. Multi-frame rate rendering

Multi-frame rate rendering [SBW∗07] decouples display up-
dates from image generation in a pipeline with asynchronous
communication. The display update stage can guarantee fast
viewing frame rates and nearly latency-free response to in-
teraction, while one or multiple GPUs in the backend stage
can produce new high quality images at their own, slower
pace.

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

Figure 2: A rendered illustration of the capturing room and
its cameras.

Multi-frame rate systems make extensive use of tempo-
ral/frame coherence, because they use the last rendering re-
sult to synthesize novel viewpoints until a new image be-
comes available. [SvLBF09] allow for motion in the scene
as long as it can be described by a transformation matrix.
[MMB97] introduced image warping to compensate for jit-
ter induced by latency.

Prerequisites

The capturing room that is used for this project consists of a
2x3 meter footprint cabin with green walls [SHRB11]. Ten
cameras are mounted on the walls: two at the back, two at
the sides and six at the front. The cameras are synchronized
and focused at the center of the cabin, where the user is al-
lowed to move freely inside a certain volume (see Figure 2).
All cameras are calibrated for their projection matrices and
connected to a single PC via three Firewire cards. The PC
is equipped with four Nvidia GTX 480 GPUs, each plugged
into a PCIe x16 slot. We decided to use only one PC in order
to avoid network latency. The output device is a 42" TV that
is mounted to the front wall in a portrait orientation.

In such a scenario, silhouettes can be extracted from the
camera images quickly and robustly by background subtrac-
tion. Silhouettes make novel view synthesis very efficient.
The image-based visual hull (IBVH) algorithm creates a
depth map from a novel viewpoint [HSR11]. See Figure 1
for an example output. Such a depth map can be textured
with the camera images for realistic image-based rendering.
To achieve repeatability during our evaluations, we use a set
of recorded AVI videos instead of live video streams.

Segmentation

Edge cache

Ray-silhouette intersection
and depth map extraction

Display operations

User input

10 camera
images

Scales with camera resolution
Scales with output resolution

0.3 - 4.8 MB

0.3 - 4.8 MB

3 - 62 MB

0.2 – 3.9 MB

Figure 3: A typical image-based visual hull rendering
pipeline. The first part consists of segmentation and undis-
tortion. The second part builds a cache data structure to
speed up the third part, the ray-silhouette interval extrac-
tion and interval intersection. The last part is responsible for
texturing and display. The data traffic between stages is in-
dicated for a single rendering pass. The value ranges cover
all camera resolutions and a maximum output resolution of
2 Megapixels.

3. Image-based visual hull rendering

The general architecture of our system consists of several
main modules (see Figure 3). Ten cameras deliver images
with a resolution of 320x240, 640x480 or 1280x960 pixels.

The following section describes the general layout of our
visual hull rendering pipeline on a single GPU. The pipeline
starts with the segmentation module.

Segmentation The camera images are uploaded to the GPU
and segmented there by applying background subtraction.
We assume a static background that is captured before the
user enters the scene, and a contrasting foreground. We use
background subtraction in normalized RGB space in order to
handle shadows correctly. The subtracted images are thresh-
olded and holes are closed by applying morphological dila-
tion and erosion to the segmented image.

Edge extraction and segment caching From each silhou-
ette image, all edges are transformed to 2D line segments.
Every pixel is checked for whether it lies at the border of
the silhouette, and a line segment is emitted if it does. Pix-
els are processed in parallel, and interior silhouette edges
are included, because they help to identify regions where the
user’s body forms a loop, e.g., with his hands.

Since the IBVH algorithm performs many line-line intersec-
tion tests, a caching data structure can speed up the pro-
cess of identifying potentially intersecting line segments
[WFEK09]. Line segments are assigned to bins that share
a common angular range around their epipole.

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

0

0,5

1

1,5

2

2,5

3

3,5
Angle cache

0

20

40

60

80

100

120

140

160
IBVH Display Misc

input resolution output resolution in thousand pixels

m
ill

is
ec

o
n

d
s

0

2

4

6

8

10

12

14

3 5 7 9

IBVH

number of cameras

m
ill

is
ec

o
n

d
s

Figure 4: Kernel execution times on a single GPU with different numbers of cameras and different input (=camera) and output
(=screen) resolutions. Angle caching scales with the camera resolution, while the other kernels scale with the output resolution.
The IBVH algorithm also scales with the number of cameras. Unless specified otherwise, the timings are given for 10 cameras,
an input resolution of 640x480 pixels and an output resolution of 480x870 pixels.

The image-based visual hull algorithm At this stage, a
viewing ray is created for every pixel. Rays start from the
desired viewpoint and intersect the image plane at the pixel’s
location and end at the back plane. The subsequent steps are
performed for each ray and camera image. The viewing rays
are projected on each camera’s image plane. The angle of the
projected viewing ray can be used to index the correct bin in
the line segment cache. All segments in the bin are checked
for 2D line intersection, using the line segment itself and the
projection of the viewing ray. Intersections are sorted and
lifted back onto the 3D ray by back projection which results
in a list of intervals along each viewing ray. These intervals
have to be intersected in order to find which intervals along
the ray are located inside the object. From these intervals,
the front-most interval starts with the front-most ray-object
intersection which in turn yields the depth buffer value at
this pixel.

Display The depth map from the last stage can now be used
for display. This stage is not part of the core algorithm and
may vary in complexity depending on the task at hand. A
color value can be computed for each pixel, or the depth
value can be used directly to compute occlusions or act as
a proxy geometry for display. For this work, we use a sim-
ple phong-shading kernel to visualize the depth values. The
result of this stage is the output image that is written to the
frame buffer on the primary GPU.

3.1. Data flow

Before the first stage begins, the camera images are read
from the driver and uploaded to the GPU. There, the images
are segmented and passed to the angle binning kernels. The
amount of data that is passed is proportional to the camera
resolution and camera count. After angle binning, the bins
are passed to the intersection kernel. The size and number of

the angle bins must be chosen such that the overall capac-
ity (size multiplied by number of bins) is sufficient to hold
all line segments of a camera. Choosing many small bins is
beneficial for performance, while few large bins require less
memory. Usually, this part of the pipeline creates the largest
data flow, which makes it a bad spot for sharing data between
GPUs. After the IBVH kernel, the desired depth map is com-
puted and passed to a shading kernel. This final stage and
the associated data flow has only minor impact on the over-
all performance and therefore marks the end of the pipeline
that is analyzed here. Figure 3 shows the amount of data that
flows through our pipeline.

3.2. Scaling with inputs

Before parallelizing the IBVH pipeline, we need to under-
stand how the execution times of the stages scale with re-
spect to their inputs. First, the segmentation and edge cache
generation extract information from the camera images.
These tasks are defined per camera image, which means the
runtime is proportional to the number of cameras and their
resolution. Next, the IBVH core computes a depth map from
the cached edges. This stage scales with the output resolu-
tion, and, to a lesser extent, with the number of edges. The
number of edges is driven by the number of cameras and
their resolutions. The final display step scales only with the
output resolution. Figure 4 shows the runtime of the stages
for different resolutions and number of cameras.

From this data we can derive that for increasing display res-
olutions, the computation of the depth map (the core IBVH
step) becomes the dominant performance factor. This part
also scales with the number of cameras. The resolution of
the camera images on the other hand does not have a strong
impact. This means that in any case we want to distribute
the depth map workload over all GPUs. For the other stages

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

C edge caches P x C IBVH intersections Display

 x C IBVH intersections P
G Display C edge caches

P x IBVH intersections Display edge caches C
G

C
G Merge

Single GPU:

Sort-First:

Sort-Last:

(a)

Viewing Ray

GPU0

GPU1

Object

Result
Interval

(b)

Figure 5: (a) different configurations of a synchronized multi-GPU IBVH pipeline and a single-GPU pipeline as a reference. C
denotes the number of cameras, P the number of output pixels, G the number of GPUs. Sort-last configuration (b): a viewing
ray intersects silhouette cones from two GPUs. The intervals are intersected again to compute the result interval.

of the pipeline it might be acceptable to compute them for
all inputs on every GPU to avoid data traffic. Data transfers
require time and synchronization, and therefore might de-
crease the performance unnecessarily. This is especially true
for smaller resolutions.

4. Parallelizing the image-based visual hull algorithm

We suggest several multi-GPU configurations of our
pipeline. The main difference between them is the num-
ber and placement of synchronization points. At a synchro-
nization point, the GPUs wait until the current stage of the
pipeline has been completed on all GPUs. Afterwards, data
is shared between the GPUs to allow later stages to have
access to all intermediate results. Figure 5 (a) shows these
synchronization points and the amount of work that needs to
be performed by each stage.

The core part of the pipeline is the IBVH stage that pro-
duces a depth map from a set of angle bins. It requires most
of the computation time. All parallelization configurations
therefore focus on how to split and distribute this stage. The
segmentation, angle binning and shading step are the same
for all configurations.

4.1. Sort-first configuration

This configuration uses a sort-first workload arrangement.
The IBVH algorithm is defined as a per-pixel operation,
which makes it very similar to raycasting in terms of how in-
dependent the computations are from each other. The work-
load can be easily split between the GPUs by dividing the
output image into equally sized boxes. The IBVH stage can
run in parallel. After IBVH computation, the synchroniza-
tion point is reached and data is shared. The final display
stage joins the subimages to form the output image. See Fig-
ure 6 (a) for an illustration of the workload distribution.

Sort-first parallelization is easy to implement, but suffers
from the memory transfer that is required to pass the input
data to the computing nodes. In our case, this means that all
camera images have to be uploaded on all GPUs. Moreover,
to achieve maximum scalability, the exact location where the
screen is split needs to be determined by a robust load bal-
ancing mechanism [MCEF08].

4.2. Sort-last configuration

Sort-last approaches usually distribute the scene objects
(models, or triangles, or bricks of volumetric data) across the
computing nodes. Nodes render their chunk of data in paral-
lel, and send the result image plus depth information to one
or more compositing nodes. Compositing is more complex
than the merging step of sort-first approaches: it involves
testing or sorting all fragments according to their depth.

Visual hull rendering is usually focused on a single scene
object: a person in our case. Even systems that can cap-
ture multiple objects in front of their cameras usually can
not distinguish between the objects before actually render-
ing them. To distribute workload across multiple nodes, we
therefore suggest to assign a subset of the cameras to each
node (=GPU).

For example, when two GPUs are used, each can process five
camera images to achieve a total of ten. Each GPU computes
the visual hull of only a subset of all available cameras (see
Figure 5 (b)). However, unlike conventional rendering, such
a subset is not a stand-alone rendered image with depth. In-
stead, it is only an intermediate state in the sequence of ray-
silhouette intersections that make up the IBVH algorithm.
This state consists of a list of intervals along each viewing
ray that must not be collapsed to a single depth value until
all subsets are intersected.

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

(a) (b)

Figure 6: Sort-first (a) and sort-last (b) configuration intermediate results of four GPUs rendered with phong shading.

In our system we have ten cameras, which means that each
GPU has to handle a maximum of five when multi-GPU
computing is desired. For the application of rendering peo-
ple, we found that two intervals along each viewing ray are
sufficient. Each interval can be described by two float values
that denote the boundaries of the interval along the viewing
ray. This means that each GPU produces a buffer that has
the resolution of the output image and four float values per
pixel. See Figure 6 (b) for an illustration of the intermediate
results.

The suggested method corresponds to a sort-last approach,
where cameras are regarded as scene objects. In contrast to
conventional sort-last approaches, the compositing step is
more involved than testing or sorting depth values. The in-
tervals at each pixel need to be intersected to produce the
final visual hull. After intersecting, the first interval that de-
scribes the object surface can be used to produce the output
depth value.

Compact interval representation Sort-last approaches can
be optimized by only transferring image parts that contain an
object [MCEF08]. This is called sparse sort-last and usually
achieved by tight fitting bounding boxes. Unfortunately, for
sort-last IBVH all pixels within the viewing volume produce
data. As a result, the data traffic after rendering is consider-
able and prevents the algorithm from scaling well with the
output resolution and the number of GPUs.

The interval data that are transfered between the GPUs cor-
respond to depth values generated from a subset of the cam-
eras. While depth buffer compression techniques are often
tuned for triangle data [HAM06], the interval data for IBVH
rendering shows a different structure, as depicted in Figure 6.
Nevertheless, more general depth buffer compression algo-
rithms can also be used for the ray-like depth structure found
in the interval data buffers.

To efficiently compress and uncompress the data without
hardware supported compression, we use a method similar
to Orenstein et al. as described in [HAM06]. We divide the
interval data into blocks of 8x8 pixels. For each block we

pick a representative pixel and distribute its interval values
across the entire block. Every other pixel within the block
computes the difference of its values to the representative
values. The differences are stored with reduced bit length
into a global buffer.

To tune the compression ratio, we support different bit
lengths per value. To decide which bit length to use, all pix-
els in the block publish their required bit length and the max-
imum is taken. With lossless compression, data traffic rates
can be reduced by approximately 33% to 45% depending on
the resolution. But there is no need for full precision as long
as there is no perceivable difference in the results. Therefore,
we drop the four least significant bits, reducing the bus load
by 60% to 70%.

To handle the entire memory transfer with a single transac-
tion, we pack the encoded data compactly in memory. We
use a single atomically modified counter which is increased
by the required amount of memory for each block. In this
way, every block retrieves its individual offset in memory
placing blocks with different compression rates next to each
other. The block offset is stored together with information
about the used bit length in a header structure. Blocks are
decompressed independently of each other. Each block reads
its offset and bit length from the header. Then, the represen-
tative values and differences are read and the decompressed
values can be generated.

4.3. Multi-frame rate configuration

Multi-frame rate (MFR) rendering decouples viewing from
image generation and typically uses separate computing
nodes or GPUs for each of the tasks. Viewing means linear
camera or object transformation, as it is common in many
applications. The image generation method can be arbitrary,
as long as a depth value can be computed for each pixel.
Generated images are transferred to the viewing node, but
the viewing node does not wait for images to become avail-
able. Instead, it uses the last known image for viewing. In
general there is a slight difference in the desired viewing
transformation and the one that was used to generate the last

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

GPUs 2-n GPU 0

CPU

GPU 1

Image-based

Visual Hull

Device

Memory

Host Memory

Ringbuffer

Downloading

Uploading

Device

Memory

Latency

Compensation

User

Interaction

Screen

Host Memory

Image-based

Visual Hull

Device

Memory

Downloading

Figure 7: Multi-frame rate configuration that uses GPU0 for
viewing and the other GPUs for parallel image-based visual
hull rendering.

image. This difference can be covered by image-warping.
Hardware-accelerated image-warping and the asynchronous
communication behavior guarantees very high frame rates
at the viewing node. The advantage over synchronized par-
allel rendering grows with increasing scene complexity and
output resolution.

IBVH rendering is a complex algorithm and therefore ben-
efits from MFR rendering. However, the visual hull trans-
forms non-rigidly every time a new set of camera images
becomes available. Therefore, the high viewing performance
of MFR rendering can only be exploited between camera im-
age updates. The frame rate of the image generation node(s)
must be higher than the update rate of the cameras. In prac-
tice we observed that this is not a limitation: the camera
update rates are usually not as high as the desired viewing
frame rates due to limited bus and network bandwidths and
latencies that slow down camera image transfer. See Section
6 for a performance analysis.

Two-pass image-warping For image-warping we use a
combination of forward and backward image-warping. For-
ward image-warping projects pixels from a source image to
the current view. This is a fast operation, but suffers from
holes in the result. Backward image-warping on the other
hand does not produce holes, but involves a search in the
original image to find the correct pixels and is therefore
slow [SCK06].

Our two pass warping approach combines the advantages of
both approaches. First, a forward warping step is used to
project the last frame’s pixel coordinates according to the
current view. The holes in this buffer which arise from for-
ward warping are closed using linear interpolation on the
pixel coordinates (in contrast to color values in traditional
approaches). Now, this buffer forms a lookup table into the
last frame with sub-pixel accuracy. In a final step, this lookup
is performed to compute the new color values, resulting in a
backward warping approach. Figure 8 illustrates the differ-
ences between color value interpolation and our approach.

Figure 8: The effect of two-pass image warping: holes after
forward image-warping (a, blue) can be filled by interpolat-
ing neighboring warp vectors as in (c) instead of interpolat-
ing color values as in (b). (d) shows the ground truth. The
red boxes are magnified below.

Our approach does not blur the image. Implementation de-
tails are described in Section 5.

Combined synchronous and asynchronous rendering
Note that large holes that come from disocclusions can not
be filled in such an efficient way. Data that is not present can
not be interpolated. Here we rely on rendering performance:
disocclusions are less likely with a quick image source.

To achieve the required performance, we want to use multi-
GPU rendering as the image source for multi-frame rate
rendering. Our system allows to combine multi-GPU (syn-
chronous) and multi-frame rate (asynchronous) IBVH ren-
dering. For example, the image source can be a sort-first or
sort-last IBVH renderer that uses all but one GPUs. The one
remaining GPU is used for image-warping and display. See
Figure 7 for an illustration of such a configuration and sec-
tion 6 for a performance evaluation.

5. Implementation

The whole pipeline is implemented in Nvidia CUDA
[HSR11] and uses streams to distribute command sequences
to the GPUs. All memory copies are issued asynchronously,
which makes the system more robust to differing workloads:
when a GPU has finished processing it can already send the
result and thus help to avoid later bus collisions. Memory is
transferred between GPUs through host memory.

All nodes are provided with the camera images (4 bytes per
pixel) that they need, state information in the form of a pro-
jection matrix (4x4 float) and bounding box information to
avoid unnecessary data traffic. Pixels of depth image seg-
ments are either compressed to two bytes of precision (half
float), or encoded per block for sort-last with compact inter-
val representation.

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

0

20

40

60

80

100

0 1 2

Sort Last SL-Sparse

10

15

20

25

30

0 0,3 0,6

Single GPU Sort First

Scaling with output resolution, 4 GPUs, 10 cameras at 640x480

M
ill

is
ec

o
n

d
s

Megapixels

(a)

0

20

40

60

80

320 640 1024

Sort First Sort Last SL-Sparse

Scaling with camera resolution

M
ill

is
ec

o
n

d
s

Camera res.

(b)

0

0,5

1

1,5

2

2,5

3

3,5

4

ideal speedup

Strong Scaling, 10 cameras 640x480

Sp
ee

d
u

p
 f

ac
to

r

(c)

Figure 9: Performance evaluation of our pipeline. (a) shows how the suggested approaches scale with respect to output reso-
lution. The left figure is a magnification of the first Megapixel range. (b) shows the scaling with camera resolution for a fixed
output resolution of 1 Megapixel. (c) illustrates how additional GPUs influence processing times at an output resolution of 2.3
Megapixels (filled bars) and 7.36 Megapixels (outlined bars).

In the case of multi-frame rate rendering, the memory
transfers are double-buffered in host memory to facilitate
asynchronous communication without stalls [HKS10]. For
image-warping the rendered images have the projection ma-
trix attached that was used to create them.

The buffer that is used for two-pass image warping is a
screen-sized array of unsigned integers. Screen coordinates
are stored in the buffer by packing them with their depth
value into a single unsigned integer. The depth values occupy
the ten most significant bits, the screen coordinates share
the rest. We can achieve efficient depth-buffering when such
data packets are written to the buffer by using atomic mini-
mum operations. For hole filling, the neighboring data pack-
ets are decoded, screen coordinates are averaged and stored
at the hole pixel.

6. Evaluation

In this section, the configurations suggested above are eval-
uated for their performance. The IBVH kernel is responsible
for most of the computation time and is therefore the main
focus of our parallelization methods and the corresponding
evaluations. As stated in the beginning, the performance of
this stage scales with the number of cameras and their reso-
lution, the display resolution and the number of GPUs. For
our evaluations we assume a fixed number of cameras of ten.
While our system works with any number of cameras, this
specific number proved to work best for the application of
rendering people with high quality. We do, however, evalu-
ate the system for different camera resolutions, display res-
olutions and number of GPUs to find out how the suggested
methods scale. The used camera images are read from the
hard-disk for repeatability. Note that we excluded the hard-
disk access times from the evaluation, because in the live
system the camera images are also not loaded from the disk.
We therefore place the images in the host memory and up-
load them to the GPUs every frame, just like the live system
would.

Scaling with display resolution In the first test series we
rendered a representative IBVH scene (see Figure 6) from
a viewpoint that is close enough to have the object fill the
screen. We averaged the rendering times of several frames at
varying display resolutions. Figure 9 (a) shows performance
measurements for four GPUs and a single-GPU as a ref-
erence. The multi-GPU approaches outperform the single-
GPU approach especially for larger output resolutions.

Scaling with camera resolution For this test we rendered
three scenes with different camera resolutions. The scenes
consist of the same person standing in similar poses. All
measurements are again averaged over multiple frames. See
Figure 9 (b) for results. While the resolutions quadruple
every step, the execution times maximally double. This is
promising for higher camera resolutions in the future.

Scaling with number of GPUs: strong scaling In this test
series we use again a representative scene (see Figure 6) and
render with one, two, three and four GPUs at a resolution
of 2.3 and 7.36 Megapixels. Performance measurements are
given as speedup factors. Speedup factors compare the per-
formance of n GPUs to the performance of one GPU. A fac-
tor of n is considered ideal and is illustrated as a red line. All
measurements are again averaged over multiple frames. Fig-
ure 9 (c) illustrates how the performance benefit of adding
an additional GPU declines with the total number of GPUs.

Multi-frame rate scaling The evaluation data of the multi-
frame rate approach is shown separately in Figure 10. We
used the scene from above and measured performance for
two and four GPUs. The dual-GPU setup uses a view-
ing GPU (GPU0) and a single GPU for IBVH rendering
(GPU1). The quad-GPU setup also uses GPU0 for viewing,
but three GPUs for sort-first parallel IBVH rendering.

The GPUs that are responsible for image generation show a
similar performance to a stand alone setup. The performance
goal for them is to stay below the camera update rate in order

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

0
10
20
30
40
50
60
70
80
90

100
110

0 1 2

GPU0 GPU1 of 2 GPUs GPU1-3 of 4 GPUs

Multi-frame Rate, 10 cameras 640x480

Megapixels

M
ill

is
e

co
n

d
s

Figure 10: Multi-frame rate performance for a setup with
two and four GPUs. GPU0 is always used for viewing.
Its performance is comparable for both configurations. The
quad-GPU setup uses three GPUs for sort-first parallel
IBVH rendering.

to avoid missing any image. The camera update rate in our
system usually is 15 Hz. The quad-GPU setup stays well
below this mark.

The performance of the viewing GPU outperforms all other
approaches easily, because viewing is a less complex task
than IBVH rendering by far. In combination with an image-
generation backend that does not miss any camera image,
this is a very powerful method for interactive IBVH render-
ing.

Interpretation and discussion In terms of performance we
observed a behavior that is common to sort-first and sort-
last parallel rendering. Sort-first nodes need to receive all
the input data, whereas sort-last nodes need to send all the
output data. Therefore, when data transfer to the nodes - in
our case the camera images - is dominant, then sort-last with
compression is a good option. Figure 9 (a) left shows such a
setup. When traffic is output-heavy due to a relatively high
output resolution then sort-first performs best. Figure 9 (a)
right illustrates this.

The performance measurements in Figure 9 (c) reveal that
the scaling of the pipeline with additional GPUs is far from
optimal. To find the reason for this, we analyzed all stages
of the pipeline. The IBVH kernel itself scales almost ideally
with an increasing number of GPUs. However, the mem-
ory transfer times between the GPUs increase stronger. At
2 Megapixels output resolution and four GPUs, the sort-last
approach uses 28% of the time for transferring output frag-
ments, and we even subtracted the transfers that overlap with
execution from this number. Only about 58% of the time was
spent with actual processing. The sort-first approach has bet-
ter scaling characteristics. For the same configuration, only
4.5% were fragment transfers and around 68% was process-
ing. To increase the processing time relative to the over-
all execution time, we also evaluated the pipeline at 7.36
Megapixels output resolution. At this very high resolution

the sort-first approach spent around 63% of the time with
processing and 5.5% with fragment transfer. From this data
we derive that it is mostly the memory traffic and the over-
head computations (kernel launches, memory initializations)
that prevent the presented pipeline from scaling well beyond
two or three GPUs.

The multi-frame rate setup can utilize a sort-first or sort-last
IBVH renderer as its image source. We found this configu-
ration to be particularly useful, because it provides over 100
frames per second on the viewing GPU even for output res-
olutions of 2 Megapixels. At the same time, a dual or triple-
GPU image source can provide enough computation power
to process every camera image. At these frame rates, the vi-
sual quality of image warping is high because disocclusion
artifacts can hardly be observed.

7. Conclusions and future work

In this paper we have introduced methods to parallelize the
image-based visual hull algorithm on multiple GPUs. First,
we analyzed the pipeline for possible parallel execution.
We identified two methods, following the common sorting-
classification: sort-first and a sort-last. For sort-last we sug-
gested to regard the cameras as scene objects, and intro-
duced how the compositing step needs to be adapted. In ad-
dition, we suggested a block-based packing scheme that re-
duces memory traffic drastically. Finally, we enhanced the
system by multi-frame rate rendering to achieve even higher
frame rates for viewing applications. We introduced two-
pass warping to achieve better hole-filling. We evaluated the
performance of all approaches and were ably to verify that a
triple or quad-GPU multi-frame rate setup can achieve very
high interactivity without sacrificing the visual quality.

In the future we want to investigate how frame-to-frame co-
herence methods can further enhance the performance of
IBVH rendering.

Acknowledgments This work was supported by the Aus-
trian Research Promotion Agency (FFG) under the BRIDGE
program, project #822702 (NARKISSOS).

References

[AFM∗06] ALLARD J., FRANCO J., MENIER C., BOYER E.,
RAFFIN B.: The grimage platform: A mixed reality environment
for interactions. In Computer Vision Systems, 2006 ICVS ’06.
IEEE International Conference on (jan. 2006), p. 46. 2

[Boy03] BOYER E.: A hybrid approach for computing visual
hulls of complex objects. In In Computer Vision and Pattern
Recognition (2003), pp. 695–701. 2

[dAST∗08] DE AGUIAR E., STOLL C., THEOBALT C., AHMED
N., SEIDEL H.-P., THRUN S.: Performance capture from sparse
multi-view video. In SIGGRAPH ’08: ACM SIGGRAPH 2008
papers (New York, NY, USA, 2008), ACM, pp. 1–10. 2

[FLZ10] FENG J., LIU Y., ZHOU B.: Real-time stereo visual
hull rendering using a multi-gpu-accelerated pipeline. In ACM

c⃝ The Eurographics Association 2012.

Hauswiesner et al. / Multi-GPU Image-based Visual Hull Rendering

SIGGRAPH ASIA 2010 Sketches (New York, NY, USA, 2010),
SA ’10, ACM, pp. 52:1–52:2. 2

[FMBR04] FRANCO J.-S., MENIER C., BOYER E., RAFFIN B.:
A distributed approach for real time 3d modeling. In Proceedings
of the 2004 Conference on Computer Vision and Pattern Recogni-
tion Workshop (CVPRW’04) Volume 3 - Volume 03 (Washington,
DC, USA, 2004), IEEE Computer Society, pp. 31–. 2

[FWZ03] FITZGIBBON A., WEXLER Y., ZISSERMAN A.:
Image-based rendering using image-based priors. In ICCV ’03:
Proceedings of the Ninth IEEE International Conference on
Computer Vision (Washington, DC, USA, 2003), IEEE Computer
Society, p. 1176. 2

[GG07] GEYS I., GOOL L. V.: View synthesis by the parallel use
of gpu and cpu. Image Vision Comput. 25, 7 (2007), 1154–1164.
2

[GHKM11] GRAF H., HAZKE L., KAHN S., MALERCZYK C.:
Accelerated real-time reconstruction of 3d deformable objects
from multi-view video channels. In Digital Human Modeling,
Duffy V., (Ed.), vol. 6777 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2011, pp. 282–291. 2

[GM03] GOLDLUECKE B., MAGNOR M.: Real-time, free-
viewpoint video rendering from volumetric geometry. In Visual
Communications and Image Processing 2003 (Lugano, Switzer-
land, June 2003), Ebrahimi T., Sikora T., (Eds.), vol. 5150 of
SPIE proceedings, The International Society for Optical Engi-
neering (SPIE), SPIE, pp. 1152–1158. 2

[HAM06] HASSELGREN J., AKENINE-MÖLLER T.: Efficient
depth buffer compression. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware
(New York, NY, USA, 2006), GH ’06, ACM, pp. 103–110. 6

[HKS10] HAUSWIESNER S., KALKOFEN D., SCHMALSTIEG
D.: Multi-frame rate volume rendering. In Eurographics Sym-
posium on Parallel Graphics and Visualization (EGPGV) (2010).
8

[HSR11] HAUSWIESNER S., STRAKA M., REITMAYR G.: Co-
herent image-based rendering of real-world objects. In Sympo-
sium on Interactive 3D Graphics and Games (New York, USA,
2011), ACM, pp. 183–190. 1, 3, 7

[LBN08] LADIKOS A., BENHIMANE S., NAVAB N.: Efficient vi-
sual hull computation for real-time 3d reconstruction using cuda.
Computer Vision and Pattern Recognition Workshop 0 (2008), 1–
8. 2

[LCO06] LEE C., CHO J., OH K.: Hardware-accelerated jaggy-
free visual hulls with silhouette maps. In VRST ’06: Proceedings
of the ACM symposium on Virtual reality software and technology
(New York, NY, USA, 2006), ACM, pp. 87–90. 2

[Li04] LI M.: Towards Real-Time Novel View Synthesis Using
Visual Hulls. PhD thesis, Universität des Saarlandes, 2004. 2

[MBR∗00] MATUSIK W., BUEHLER C., RASKAR R., GORTLER
S. J., MCMILLAN L.: Image-based visual hulls. In SIG-
GRAPH ’00 proceedings (New York, NY, USA, 2000), ACM
Press/Addison-Wesley Publishing Co., pp. 369–374. 2

[MCEF08] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. In ACM SIG-
GRAPH ASIA 2008 courses (New York, NY, USA, 2008), SIG-
GRAPH Asia ’08, ACM, pp. 35:1–35:11. 5, 6

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.: Post-
rendering 3d warping. In In 1997 Symposium on Interactive 3D
Graphics (1997). 3

[NNT07] NITSCHKE C., NAKAZAWA A., TAKEMURA H.: Real-
time space carving using graphics hardware. IEICE - Trans. Inf.
Syst. E90-D, 8 (2007), 1175–1184. 2

[SBW∗07] SPRINGER J. P., BECK S., WEISZIG F., REINERS D.,
FROEHLICH B.: Multi-frame rate rendering and display. In VR
(2007), Sherman W. R., Lin M., Steed A., (Eds.), IEEE Computer
Society, pp. 195–202. 2

[SCK06] SHUM H.-Y., CHAN S.-C., KANG S. B.: Image-Based
Rendering. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006. 7

[SHRB11] STRAKA M., HAUSWIESNER S., RUETHER M.,
BISCHOF H.: A free-viewpoint virtual mirror with marker-less
user interaction. In Proc. of the 17th Scandinavian Conference
on Image Analysis (SCIA) (2011). 3

[SSS∗02] SLABAUGH G. G., SLABAUGH G. G., SCHAFER
R. W., SCHAFER R. W., HANS M. C., HANS M. C.: Image-
based photo hulls. In In The Proceedings of the 1 st International
Symposium on 3D Processing, Visualization, and Transmission
(2002), pp. 704–708. 2

[SvLBF09] SMIT F. A., VAN LIERE R., BECK S., FRÖHLICH
B.: An image-warping architecture for vr: Low latency versus
image quality. In VR (2009), IEEE, pp. 27–34. 3

[TLMpS03] THEOBALT C., LI M., MAGNOR M. A., PETER
SEIDEL H.: A flexible and versatile studio for synchronized
multi-view video recording. In Vision, Video and Graphics, p.9-
16, Bath, UK (2003). 2

[WFEK09] WAIZENEGGER W., FELDMANN I., EISERT P.,
KAUFF P.: Parallel high resolution real-time visual hull on gpu.
In ICIP’09: Proceedings of the 16th IEEE international confer-
ence on Image processing (Piscataway, NJ, USA, 2009), IEEE
Press, pp. 4245–4248. 2, 3

[WTM06] WU X., TAKIZAWA O., MATSUYAMA T.: Parallel
pipeline volume intersection for real-time 3d shape reconstruc-
tion on a pc cluster. In Proceedings of the Fourth IEEE Inter-
national Conference on Computer Vision Systems (Washington,
DC, USA, 2006), IEEE Computer Society, pp. 4–. 2

[YLKC07] YOUS S., LAGA H., KIDODE M., CHIHARA K.:
Gpu-based shape from silhouettes. In proceedings of GRAPHITE
’07 (New York, NY, USA, 2007), ACM, pp. 71–77. 2

[YZC03] YUE Z., ZHAO L., CHELLAPPA R.: View synthesis of
articulating humans using visual hull. In ICME ’03: Proceed-
ings of the 2003 International Conference on Multimedia and
Expo (Washington, DC, USA, 2003), IEEE Computer Society,
pp. 489–492. 2

c⃝ The Eurographics Association 2012.

