
How naive is naive SpMV on the GPU?
Markus Steinberger∗, Andreas Derler†, Rhaleb Zayer∗ and Hans-Peter Seidel∗

∗Max Planck Institute for Informatics
Saarbrücken, Germany

Email: {msteinbe,rzayer,hpseidel}@mpi-inf.mpg.de
†Graz University of Technology

Graz, Austria
Email: andreas.derler@icg.tugraz.at

Abstract—Sparse matrix vector multiplication (SpMV) is the
workhorse for a wide range of linear algebra computations. In a
serial setting, naive implementations for direct multiplication and
transposed multiplication achieve very competitive performance.
In parallel settings, especially on graphics hardware, it is widely
believed that naive implementations cannot reach the perfor-
mance of highly tuned parallel implementations and complex
data formats. Most often, the cost for data conversion to these
specialized formats as well as the cost for transpose operations are
neglected, as they do not arise in all algorithms. In this paper, we
revisit the naive implementation of SpMV for the GPU. Relying
on recent advances in GPU hardware, such as fast hardware
supported atomic operations and better cache performance, we
show that a naive implementation can reach the performance
of state-of-the-art SpMV implementations. In case the cost of
format conversion and transposition cannot be amortized over
many SpMV operations a naive implementation can even outper-
form state-of-the-art implementations significantly. Experimental
results over a variety of data sets suggest that the adoption of
the naive serial implementation to the GPU is not as inferior as
it used to be on previous hardware generations. The integration
of some naive strategies can potentially speed up state-of-the-art
GPU SpMV implementations, especially in the transpose case.

I. INTRODUCTION

Sparse matrix vector multiplication (SpMV) is a key linear-
algebra primitive in many scientific algorithms. In scientific
computing, there has always been a strive to increase per-
formance in order to target larger problems and reduce the
response time in critical applications. A broadly adopted
solution to fulfill this ever growing demand for more compute
power amounts to the use of parallel architectures. One
such parallel architecture is the graphics processing unit
(GPU), which attracts increasing interest in high performance
computing applications due to its potential high raw compute
power and high memory bandwidth. Unsurprisingly, SpMV on
the GPU quickly became the focus in a variety of research
domains, which is reflected in the large body of work aimed at
increasing its performance on multicore architectures like the
GPU [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15].

In general, SpMV is usually limited by memory bandwidth
rather than compute power, which, in the early days of sparse
matrix algebra, led to the development of compressed formats,
such as compressed sparse rows (CSR). CSR is still the quasi
standard in many application fields [16]. While the CSR format
lends itself to efficient serial implementations for direct SpMV

and achieves equal performance in the transpose case (SpMVT),
a parallel implementation is a non trivial problem. Targeting
the GPU, a parallel implementation must consider additional
factors, like load balancing between the vast number of cores,
instruction divergence on the single instruction multiple data
(SIMD) compute units, memory access conflicts between
threads, cache performance among thousands of threads, and
local memory access patterns. Many authors identified the
matrix format as a major hurdle for performance and a myriad
of intermediate formats have been proposed to increase SpMV
performance [8], [12], [17]. However, the overhead of format
conversion as well the integration with existing codes hinders
the mainstream adoption of these intermediate formats. Most
recently, awareness of these issues prompted a slightly different
direction where the modification of the CSR format is restricted
to a minimum [13], [14], [15]. Nevertheless, format conversion
is usually still more costly than a single SpMV in the altered
format.

Despite great strides in performance after format conversion,
most existing implementations lack generality in the sense
that only direct multiplication is handled and the transpose—
which is also often needed in practice—is overlooked. Thus,
to perform SpMVT with an intermediate format, not only
a transformation to that format is required, but also an
explicit transpose operation on the matrix itself. Due to these
issues, vendor based implementations such as the standard
implementation of cuSparse [18] and CUSP [19] are commonly
used. They either provide a direct implementation of SpMVT
or at least means to explicitly compute the transposed matrix.
However, the provided SpMVT as well as the explicit transpose
computation are usually up to an order of magnitude slower
than a direct SpMV. While algorithms that repeatedly perform
SpMVT can transpose the matrix once and achieve good
performance on the GPU, algorithms that require both SpMV
and SpMVT are left with slow performance.

The entire body of research on SpMV on the GPU is
motivated by the assumption that a naive implementation that
follows the serial implementation greatly lacks performance.
However, this notion is mostly based on the performance
achieved on early GPU architectures and codes compiled
with one of the first compilers available for GPUs. In re-
cent years, the hardware has significantly evolved. Register
files [20] and cache sizes [21] have been increased, global



A =


0 5 0 1
2 3 6 0
0 0 7 0
1 0 0 0

 val = {5, 1, 2, 3, 6, 7, 1}
col id = {1, 3, 0, 1, 2, 2, 0}

row ptr = {0, 2, 5, 6, 7}

Fig. 1: A simple matrix in CSR format stores the values and
column ids explicitly and offsets to the non-zeros of each row.

memory accesses can directly be cached in fast L1-cache [22],
hardware supported floating point atomic operations have been
introduced [20], [21], and the compiler nowadays cares for in-
struction level parallel code. The combination of these advances
can lead to a significant boost of naive code performance on
current hardware when compared to specialized code that was
designed with fewer hardware features in mind.

In this paper, we take a look at a naive implementation
of SpMV and SpMVT in the light of recent advances in
GPU architecture and compare the performance to commonly
used implementations. We are especially interested in the
performance of often neglected scenarios like SpMVT, which
is usually troublesome in other implementations. In the follow-
ing, we will first review the CSR format and its transpose
counterpart the compressed sparse columns (CSC) format.
We then briefly discuss the straightforward serial SpMV and
SpMVT implementations and translate them into a naive GPU
implementation. We compare the performance of these naive
implementations to cuSparse, CUSP, and bhSparse [15], and
show that the straightforward adaption of the classical serial
formulation to the GPU can achieve similar performance.
discuss the implication found throughout the experiments.
Finally, with the evaluation in mind, we answer the question
how naive a naive SpMV on the GPU really is.

II. CSR AND CSC FORMAT

Arguably the most straightforward formats for representing
a sparse matrix is to store all of its non-zero entries alongside
their row and column coordinates. This format is widely known
as coordinate list (COO). While offering complete flexibility in
terms of the order in which entries are stored, it also requires
a large amount of memory per non-zero entry (row id, column
id, and value). The CSR and CSC format reduce the memory
requirements at the cost of less flexibility in terms of storage
order. Instead of storing row ids for each entry, CSR enforces
an ordering of the values according to the rows, such that all
entries of a given row lie consecutively in memory. Thus, the
row ids can be replaced by pointers to the first element in each
row.

Usually, the pointers are stored as simple indices. In this
way, a matrix A of size n ×m can be represented by three
arrays: The floating point values array val of size nnz (number
of non-zeros), an integer array col id of size nnz that stores
the column id of each entry, and an integer array row ptr of
size n + 1 which stores the offset to the beginning of each
row. Thus, an entry ai,j ∈ A is stored as the combinations
of its value val[k] and its column id col id[k] = j, while

row ptr[i] ≤ k < row ptr[i+1] holds, as shown for a simple
matrix in Fig. 1. Storing a matrix in CSR format thus reduces
the memory requirement by nnz− n integers compared to the
COO format. Moreover, reducing the storage cost goes hand
in hand with reducing the amount of memory that needs to be
read when performing SpMV. Additionally, the CSR format
enforces elements of the same row to lie consecutively in
memory. Both factors are important for efficient computation,
as SpMV is usually memory bandwidth limited and data locality
is important for effective cache usage. Note that the CSR
format has been used since the early days of sparse matrix
formulations [23], [24], and continues to be one of the prevalent
matrix formats.

The CSC format is defined analogously to the CSR format,
but sorts the entries along the columns instead of the rows and
removes the column id array from the COO format rather than
the row id. Thus, storing a matrix in CSC format is equivalent
to storing the transposed matrix in CSR format.

III. SERIAL SPMV

Using the CSR format, SpMV can be easily implemented in
a serial algorithm, as shown in Algorithm 1. For every output
element (ln 2), the algorithm iterates over all entries in the
corresponding row of the matrix (line 4). The col id is used to
look up the required entry from the input vector and the result
is simply summed up. This simple algorithm loads sequential
entries from the val array and col id array. Thus, good cache
behavior can be expected for the core of the algorithm (line 5).
Similarly, consecutive values in the row ptr array are required.
If the entries within the same row are close by, even the data
loads from x will show good cache behavior.

1 SpMV y = A · x
2 for i ← 0 to A.num rows do
3 yi ← 0
4 for k ← A.row ptr[i] to A.row ptr[i+ 1] do
5 yi ← yi +A.val[k] · x[A.col id[k]]
6 end
7 y[i]← yi
8 end
Algorithm 1: A simple serial SpMV algorithm usually
achieves very good performance on the CPU as well as a
good cache behavior.

In the serial setup, the implementation of the SpMVT
algorithm is as simple as the SpMV implementation, as shown
in Algorithm 2. Again, the algorithm can iterate over the rows
of the matrix (line 5). However, as the matrix is transposed,
the column id determines the output vector entry that needs
to be accessed (line 7). Thus, it is also necessary to zero the
output vector (line 2-4) before looping over the matrix elements.
While the access pattern for val and col id is again cache
friendly, the way the output vector is accessed depends on the
matrix data itself.



1 SpMVT y = A> · x
2 for i ← 0 to A.num cols do
3 y[i]← 0
4 end
5 for i ← 0 to A.num rows do
6 for k ← A.row ptr[i] to A.row ptr[i+ 1] do
7 y[A.col id[k]]← y[A.col id[k]] +A.val[k] · x[i]
8 end
9 end
Algorithm 2: The serial SpMVT algorithm is very similar
to the SpMV implementation. Thus, performance similar to
SpMV can be expected from a serial implementation.

IV. NAIVE PARALLEL SPMV

Implementing a naive SpMV and SpMVT algorithm on the
GPU is nearly as straightforward as the serial CPU algorithm.
Starting from the serial algorithm one can simply parallelize
the loop over the matrix rows (line 2 in SpMV and line 5 in
SpMVT). Obviously, this has been done by many authors before.
However, such a naive parallelization is usually considered
very inefficient. In the following we discuss the characteristics
of the naive SpMV implementation and highlight under which
circumstances it can actually achieve good performance.

A. Caching

The considerations about cache behavior on the CPU are also
true for the cache behavior on the GPU. However, when simply
storing values in global GPU memory, they do not necessary go
through the entire cache hierarchy, but might only be cached
in L2-cache, which can be about one order of magnitude
slower than the L1-cache found on the GPU multiprocessors.
Thus, implementations usually store the matrix as well as the
input vector in a texture. Textures are cached directly on the
multiprocessors (L1) and no cache coherency algorithm is
necessary as texture data is assumed to be immutable. While
this somewhat tedious texture setup and texture loading was
necessary for previous hardware generations, current Nvidia
GPUs (since GK110) support the so called ldg instruction,
which generate loads from global GPU memory that use the
L1 cache with a non-coherent caching algorithm, i.e., achieving
the same behavior and performance as textures. Also, current
compilers for the GPU will usually detect memory loads that
can be handled as ldg, e.g., when an array is marked as constant.
Thus, a naive implementation will achieve the same caching
performance as an implementation that uses textures.

B. Load Balancing

A simple parallelization over the rows offers parallel work
equal to the number of rows in the matrix. For large matrices
this is sufficient to fully fill current GPUs: on the latest GPU
architectures about 60 000 threads are required to provide a
sufficient number of ready threads for latency hiding of memory
transfers. Thus, typical sparse matrices offer sufficient parallel
workloads for at least one GPU. However, parallelism alone
is only one of the factors that influence GPU performance.

Another is load balancing. By parallelizing over the matrix
rows, one might assign vastly different work loads to individual
threads, i.e., when the number of entries varies between matrix
rows. Thus, a single dense row can arbitrarily delay the
execution, i.e., one needs to wait for this one thread to finish,
while all other GPU cores are idle. This fact has been identified
as an issue before and is one of the major motivation for recent
alternative matrix data formats [14], [15].

However, load balancing among the entirety of rows is a
too coarse way of looking at the issue. The GPU hardware
scheduler tries to fill available execution cores whenever
possible. To this aim, it operates on thread groups that at least
match the SIMD width of the GPU. These groups are often
called warps (32 threads, Nvidia) or wavefronts (64 threads,
AMD). Henceforth, we refer to them as warps. As soon as
all threads within a warp finish their execution, the hardware
scheduler can free their resources and start the execution of
new warps (if there are sufficient resources available). Consider
a large matrix, whose first 32 rows are dense and all other
rows are sparse. In the naive implementation, the warp working
on the first 32 rows will take very long in comparison to the
threads working on the sparse rows. However, if the matrix
is large enough, the hardware scheduler can iterate over all
other rows while the first warp operates on its rows. In this
case, the overall performance might not suffer at all. Even,
if the number of non-zeros per row vary vastly throughout
the matrix, performance still can be good, as long as rows of
approximately equal size end up within the same warp.

C. Divergence

When rows with different numbers of non-zeros end up
within the same warp, performance will certainly deteriorate
in the naive approach. As the hardware scheduler only works
on the notion of warps, a single thread within one warp can
slowdown all other 31 threads, effectively yielding a worst case
performance reduction of up to a factor of 32 in comparison
to a perfectly load balanced algorithm that parallelizes only
over the rows. This issue is usually referred to as a form of
thread divergence. While divergence, as a major reason for
slowdowns, is limited to a factor of 32, it must be considered
that in practice the matrices might not be large enough to hide
long running warps and that dense rows might not be launched
immediately, which might result in an inability to balance their
running time with a higher number of sparser rows. In this
cases, the overall slowdown can be significantly larger. Thus,
more advanced algorithms try to not only parallelize over the
rows, but also within the rows [13], [14], [15].

D. Memory Access Pattern

SpMV in a serial implementation is usually considered
memory bandwidth limited. While, on the GPU, the previously
described load balancing issues can be a more pressing issue
than memory bandwidth, memory access patterns still influence
performance. Parallelizing over the rows of the matrix will lead
to all threads accessing matrix elements that are as far apart
as there are entries in each row, i.e., if there is only a single



element in each row, all threads load data that is right next
to each other in memory. In this case, the memory requests
of all thread within one warp can be handled with a single
transaction (for single precision data in val and integer data
in col id). For every additional non-zero entry, the number of
required memory transactions increases by one as the number
of fetched cache lines increases accordingly. For example, if
there are three elements in each row, three transactions are
needed to serve an entire warp. The limit is reached when there
are 32 or more elements per row. In this case, the memory
requests of threads within a warp do not overlap at all and
one transaction for each thread is needed. However, after each
thread’s first load, the following entries are expected to be
resident in L1 cache. While this is the ideal case, it must
be noted that up to about 2000 threads can run on the same
multiprocessor, sharing the L1 cache and possibly replacing
each others entries. Thus, it should be expected that fewer
elements per row will still increase the performance of the
naive algorithm. A more complex algorithm could load the
matrix content to shared memory on the multiprocessor and
use it as a manual cache [13].

V. NAIVE PARALLEL SPMVT

While the parallelization of SpMV in the CSR format is
straightforward, the parallelization over the rows introduces
issues in SpMVT. The output element that needs to be updated
in the inner loop (line 7) depends on col id and not solely
on the thread id as before. Thus, different threads may update
the same entry of y, introducing race conditions. This problem
not only arises in the naive algorithm, but is inherent to the
CSR format as entries are sorted according to the rows. This
issue also led to alternative data formats developed for multi-
threaded CPU SpMV [25]. One obvious way of resolving
the race conditions on the GPU is using atomic operations.
However, they are widely considered as too slow for scenarios
where every single step of the algorithm creates one atomic
operation. While that is certainly true for CPU architectures
which do not provide hardware support for floating point atomic
additions, current GPUs might show higher performance than
expected. GPU architectures as shipped today provide full
support for single-precision floating point atomic operations in
hardware. Double-precision atomic operations will be supported
in the upcoming Nvidia architecture [26]. Thus, our naive
implementation of SpMVT uses atomic operations to resolve
the access conflicts that arise in the serial implementation (line
7).

The loop used to zero the output vector (line 2) can also
be fully parallelized and will show perfect memory access
patterns. Ignoring the use of atomic operations, all performance
characteristics discussed for the naive SpMV implementation
also hold for the naive SpMVT. However, the way the input
vector is accessed changes: each thread accesses the same entry
over and over. Current compilers recognize this fact and load
the value only a single time and reuse it during computations.
Also note that threads will access consecutive elements of x
and a perfect memory access pattern will be achieved.

A. Atomic Operations

The atomic operations that arise in SpMVT are a special
case. As the algorithm does not require the previous value
stored in y for later computation, the compiler will generate
a so-called atomic reduction (red) instruction for single
precision floating point data. In this case, the instruction
together with its operands can be handed off to the memory
controller and the executing thread does not have to wait
for the result of the atomic operation. Thus, a red can be
significantly faster than a full atomic operation. Although
the red instruction can be efficiently implemented as a tree
reduction in hardware, its performance will ultimately depend
on the number of collisions that arise between different threads.
Thus, a matrix with dense columns will generate more collisions
and show degenerated performance, whereas matrices with
entries spread over different columns will show a higher
performance. In an ideal setting, the performance of the naive
SpMVT implementation will be similar to the naive SpMV.

While atomic-add instructions for double precision floating
point data are not available on current GPUs, they can be
emulated using atomic-compare-and-swap instructions which
are readily available for 64 bit integer data types. Unfortunately,
this precludes the use of red operations and requires a
sequential resolution of collisions by the calling threads, as
shown in Algorithm 3. Thus, double precision SpMVT can be
significantly worse than single precision, as every collision has
the potential to lead to another iteration of the loop.

1 AtomicAddDouble (address, value)
2 old← read address
3 do
4 assumed← old
5 old← atomicCAS (address, assumed,

value+ assumed)
6 while assumed 6= old
Algorithm 3: Double precision atomic addition can be
implemented using atomic-compare-and-swap if no hardware
support for double precision atomic-add is available.

VI. EVALUATION

To evaluate the performance of the naive approach, we
compare it to the vendor provided cuSparse [18] and CUSP [19],
as well as to the most recent bhSparse [15]. In all cases, we
assume that a matrix in CSR format is present in GPU main
memory and we want to perform a single SpMV/SpMVT
operation, highlighting all costs of format conversion and
transposition. cuSparse allows to directly use the CSR matrix
for SpMV and SpMVT, whereas it is noted that SpMVT can
take significantly longer and requires additional memory, i.e.,
internal conversion takes place. CUSP only provides SpMV,
thus, an explicit transpose is required before SpMVT. bhSparse
always requires a conversion to their CSR5 format. It also
does not provide SpMVT. Thus, for SpMVT we use cuSparse
to compute the transpose, then convert to CSR5, and call the
provided SpMV. As the CSC format is conceptually the same



as the CSR format, we ran all experiments in both CSR and
CSC format, revealing non-symmetric behaviors of the used
algorithms. Note that using CSC SpMVT equals SpMV in
CSR and thus SpMVT is efficient for CSC data while SpMV
is not.

As a test system, we used an Intel Xeon E5-2637 v3
CPU running at 3.50GHz, 32GB of memory and an NVIDIA
Geforce 980Ti with 2816 compute cores and 6GB of memory
running at 1GHz. As test cases we used a variety of matrices
from the University of Florida Sparse Matrix Collection [27],
including the ones used for the evaluation of compressed sparse
blocks on the CPU [25]. The used matrices and performance
results for single precision floating point data are shown in
Fig. 2. A detailed list of each algorithm’s runtime as well as
multiplication time ignoring conversion are given in Fig. 3.

Looking at the performance results in Fig. 2, it becomes
apparent that cuSparse, CUSP and bhSparse achieve clearly
better performance for CSR SpMV (CSC SpMVT) than for
CSR SpMVT (CSC SpMV). The data conversion step to CSR5
performed as part of bhSparse test, clearly reduces the overall
achieved performance if only a single multiplication is carried
out. However, the detailed timings in Fig. 3 show that the
pure multiplication performance of bhSparse (gray row) is on
average better than CUSP and cuSparse. Thus, as expected, in
a scenario where multiple SpMV operations are carried out
sequentially, formats that are specifically designed for GPU
SpMV achieve better performance.

Comparing the performance of the naive implementation
to the other approaches for CSR SpMV does not yield a
clear winner. The naive implementation, as well as CUSP
achieve the best performance in 5 cases, cuSparse in 3 cases
and bhSparse in 1. Ignoring data conversion, bhSparse steals
the best performance from CUSP in one more case. The
naive approach shows the best performance for matrices that
are large, have few nnz with a low standard deviation per
row, and show a uniform distribution of entries. Note that
a single row with many elements (1.3k) as in rajat31 does
not reduce performance significantly as predicted before. The
naive approach suffers due to load imbalances and divergence,
if the matrix is small and has a high variance among nnz
per row, as, e.g., in sme3Dc or poisson3Da. As predicted,
if the matrix is slightly larger and at least has rows with
similar nnz close by, like in ASIC 320k or webbase, the
performance of the naive approach is equal to or slightly
better than cuSparse. However, CUSP working with a global
sorting approach, generates more uniform workloads in these
cases, achieving an overall better performance. Interestingly,
bhSparse significantly outperforms all other approaches for
ASIC 320k, with its high variance between rows/columns.
However, the performance of all approaches is very low in
this case. The performance of CSC T is, as expected, most
often very similar to CSR. Exceptions arise, when a transpose
operations significantly changes the structure of the matrix, like
for webbase, cont11, or Rucci, where either significant changes
in the distribution of nnz arise or the matrix dimensions change.

Looking at the performance of SpMVT (CSR T and CSC),

the naive approach takes the lead in all but one test case, being
on average about 6× faster than cuSparse, 17× faster than
CUSP, and 26× faster than bhSparse. The naive implementation
using atomics is most often similar in performance to the
corresponding SpMV case, showing that hardware supported
atomic operations can be very competitive to standard memory
writes. The most interesting case is Rucci1, where the naive
implementation for CSR T outperforms the other approaches
by 200-300×. The structure of Rucci1 seems well suited for
the naive implementation, as close by rows have many entries
in the same columns. Thus, the atomic red can at first locally
reduce values within a warp, and only a smaller number of
transactions goes through to the global reduction. Note that the
naive implementation performs worse for the CSC format, as
it offers less parallelism (20 times fewer columns than rows)
and the local structure of the matrix is non symmetric. Again
note that the large performance gains are only due to the data
conversion required by the other approaches. In situation where
a transpose can be computed once and reused multiple times,
the other techniques produce on average better results, as shown
in Fig. 3 (comparing the slightly grayed out values). However,
the naive implementation using atomics is still faster in three
cases than the other approaches even when they are given the
transposed matrix (cont11 l, Rucci1, rajat31)!

The relative performance of the naive SpMV is slightly worse
for double precision than single precision. This behavior can be
attributed to the increase in cache load (by a factor of almost
two due to double precision) and the strong reliance of the
naive algorithm on cache performance. The double precision
naive SpMVT, with the emulated atomic-add operations—as
expected—shows significantly worse performance. Especially,
in cases with a high number of collision (ASIC 320k and
webbase), the performance is reduced by more than 10× over
the SpMV implementation.

Overall, we summarize the results as follows:
• For a subset of matrices (large, low variance of nnz per

row), the naive SpMV can outperform other approaches,
even when ignoring conversion costs.

• For less regular matrices, the performance of the naive
approach is significantly below the other approaches.
These cases also reduce its average performance below
CUSP and cuSparse.

• For SpMVT, the naive implementation using atomic
operations on average achieves similar FLOPS as SpMV,
outperforming all other approaches significantly, if the
transpose cannot be precomputed.

• The emulated double precision atomic-add operation is
too slow on current GPU hardware to achieve competitive
results. Upcoming architectures will, however, support
double precision atomic-add in hardware.

VII. CONCLUSION

In this paper, we revisited the naive implementation of SpMV
and SpMVT on the GPU. While the presented algorithms are
not new, we show that their performance on current GPU
hardware is significantly better than what is usually believed.



Name (ShortName) Performance
Rows×Columns

Structure

GFLOPS
No-Zeros Naive

cuSparse
CUSP
bhSparseCSR: mean, max

CSC: mean, max

poisson3Da (poiss)

CSR CSR T CSC CSC T
0
5

10
15
20
25
30
35
40

13.5k×13.5k

352.8k

26.1(13.8), 110.0

26.1(13.8), 110.0

ASIC 320k (asic)

CSR CSR T CSC CSC T
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

321.8k×321.8k

2.6M

8.2(503.0), 203.8k

8.2(503.0), 203.8k

webbase (web)

CSR CSR T CSC CSC T
0

5

10

15

20

1.0M×1.0M

3.1M

3.1(25.3), 4.7k

3.1(36.9), 28.7k

sme3Dc (sme)

CSR CSR T CSC CSC T
0

10
20
30
40
50
60
70

42.9k×42.9k

3.1M

73.3(37.0), 405.0

73.3(37.0), 405.0

parabolic fem (para)

CSR CSR T CSC CSC T
0

10

20

30

40

50

525.8k×525.8k

3.7M

7.0(0.2), 7.0

7.0(0.2), 7.0

cont11 l (cont)

CSR CSR T CSC CSC T
0

10
20
30
40
50
60

1.5M×2.0M

5.4M

3.7(0.9), 5.0

2.7(2.5), 7.0

Rucci1 (rucci)

CSR CSR T CSC CSC T
0

50
100
150
200
250
300
350
400

2.0M×109.9k

7.8M

3.9(0.3), 4.0

70.9(11.4), 108.0

Name (ShortName) Performance
Rows×Columns

Structure

GFLOPS
No-Zeros Naive

cuSparse
CUSP
bhSparseCSR: mean, max

CSC: mean, max

kkt power (kkt)

CSR CSR T CSC CSC T
0

10

20

30

40

2.1M×2.1M

14.6M

7.1(7.4), 96.0

7.1(7.4), 96.0

rajat31 (rajat)

CSR CSR T CSC CSC T
0

10
20
30
40
50
60
70

4.7M×4.7M

20.3M

4.3(1.1), 1.3k

4.3(1.1), 1.3k

bone010 (bone)

CSR CSR T CSC CSC T
0

10
20
30
40
50
60
70

986.7k×986.7k

23.9M

24.2(5.3), 27.0

24.2(5.3), 27.0

asia osm (asia)

CSR CSR T CSC CSC T
0

10

20

30

40

50

12.0M×12.0M

25.4M

2.1(0.5), 9.0

2.1(0.5), 9.0

ldoor (ldoor)

CSR CSR T CSC CSC T
0

10
20
30
40
50
60
70

952.2k×952.2k

46.5M

48.9(11.9), 77.0

48.9(11.9), 77.0

europe osm (euro)

CSR CSR T CSC CSC T
0
5

10
15
20
25
30
35
40

50.9M×50.9M

108.1M

2.1(0.5), 13.0

2.1(0.5), 13.0

Flan 1565 (flan)

CSR CSR T CSC CSC T
0

10
20
30
40
50
60
70
80
90

1.6M×1.6M

117.4M

75.0(11.4), 81.0

75.0(11.4), 81.0

Fig. 2: Our experiments cover matrices of various sizes and densities. The accompanying statistics show the mean number of
entries per row/column the standard deviation of the entry count in parenthesis, and the max number of entries. The performance
plots show the achieved performance in GFLOPS (higher is better), measured as three times nnz (multiplication, addition, and
per element scaling). CSR, CSR T (lighter color), CSC, and CSC T (lighter color) correspond to an SpMV in CSR format,
SpMVT in CSR, SpMV in CSC, and SpMVT in CSC, repsectively. The performance includes the time spent on explicit
transpose operations (CSR T and CSC) and format conversion (bhSparse). Note the high performance of the naive approach for
CSR T and CSC, where atomic operations are used.
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Especially in the case, when a matrix is only used for a single
SpMV or SpMVT operation, where format conversion and
transposition cannot be amortized over many multiplications,
a naive implementation is a viable alternative. If the matrix is
large and shows little variance among the number of non-zeros
per row, the naive implementation even outperformed the other
tested approaches for SpMV (leading the charts in 5 test cases).
In the case of SpMVT, where explicit transpose operations hurt
performance, the naive implementation using atomic operations
was the fastest implementation in all but one case. Also, the
naive SpMVT does not require any additional memory for data
transposition.

While we do not presume that a naive implementation
is a universal tool to tackle SpMV and SpMVT, it is time
that strategies that did not work well on previous hardware
generations are revisited without previous misconceptions. For
example, the use of atomic operations for SpMVT is not limited
to the naive approach, but approaches like cuSparse or bhSparse
can be adapted in this way, building on the advantages of both
respective ideas. According to our results for the transition from
naive SpMV to SpMVT, we believe the performance of SpMV
and SpMVT could also be leveled in other approaches, yielding
high performance in all situations. Alternatively, performance
gains can also be achieved in practice by switching to a naive
SpMV implementation when matrices show a very regular
structure and little variance within the number of non-zeros
per row.
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on the GPU: Conjugate gradients and multigrid,” ACM Trans. Graph.,
vol. 22, no. 3, pp. 917–924, Jul. 2003.

[2] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors,” in SC ’09: Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis. New York, NY, USA: ACM, 2009, pp. 1–11.

[3] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on GPUs,” SIGPLAN Not., vol. 45, no. 5,
pp. 115–126, Jan. 2010.

[4] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning
sparse matrix-vector multiplication for GPU architectures,” in Proceed-
ings of the 5th International Conference on High Performance Embedded
Architectures and Compilers, ser. HiPEAC’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 111–125.

[5] J. C. Pichel, F. F. Rivera, M. Fernández, and A. Rodrı́guez, “Optimization
of sparse matrix-vector multiplication using reordering techniques on
GPUs,” Microprocess. Microsyst., vol. 36, no. 2, pp. 65–77, Mar. 2012.

[6] M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector
multiplication on GPUs using compile-time and run-time strategies,” IBM
Reserach Report, RC24704 (W0812-047), 2008.

[7] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” Parallel Comput., vol. 35, no. 3, pp. 178–194, Mar.
2009.

[8] B.-Y. Su and K. Keutzer, “clSpMV: A cross-platform OpenCL
SpMV framework on GPUs,” in Proceedings of the 26th ACM
International Conference on Supercomputing, ser. ICS ’12. New
York, NY, USA: ACM, 2012, pp. 353–364. [Online]. Available:
http://doi.acm.org/10.1145/2304576.2304624

[9] X. Sun, Y. Zhang, T. Wang, X. Zhang, L. Yuan, and L. Rao, “Optimizing
SpMV for diagonal sparse matrices on GPU,” in 2011 International
Conference on Parallel Processing, Sept 2011, pp. 492–501.

[10] F. Vázquez, J. J. Fernández, and E. M. Garzón, “A new approach for
sparse matrix vector product on NVIDIA GPUs,” Concurr. Comput. :
Pract. Exper., vol. 23, no. 8, pp. 815–826, Jun. 2011.

[11] H. Yoshizawa and D. Takahashi, “Automatic tuning of sparse matrix-
vector multiplication for crs format on GPUs,” in Computational Science
and Engineering (CSE), 2012 IEEE 15th International Conference on,
Dec 2012, pp. 130–136.

[12] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: Yet another SpMV
framework on GPUs,” in Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’14. New York, NY, USA: ACM, 2014, pp. 107–118.

[13] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-
cation on GPUs using the csr storage format,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press,
2014, pp. 769–780.

[14] Y. Liu and B. Schmidt, “LightSpMV: Faster CSR-based sparse matrix-
vector multiplication on CUDA-enabled GPUs,” in 2015 IEEE 26th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), July 2015, pp. 82–89.

[15] W. Liu and B. Vinter, “CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proceedings of the 29th
ACM on International Conference on Supercomputing, ser. ICS ’15. New
York, NY, USA: ACM, 2015, pp. 339–350.

[16] Y. Saad, Iterative methods for sparse linear systems. Siam, 2003.
[17] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan, “An efficient

two-dimensional blocking strategy for sparse matrix-vector multiplication
on GPUs,” in Proceedings of the 28th ACM International Conference
on Supercomputing, ser. ICS ’14. New York, NY, USA: ACM, 2014,
pp. 273–282.

[18] NVIDIA, The API reference guide for cuSPARSE, the CUDA sparse
matrix library., v7.5 ed., NVIDIA, September 2015.

[19] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” NVIDIA, Technical Report NVR-2008-004, Dec. 2008.

[20] Nvidia, “NVIDIA Kepler GK110 architecture whitepaper,” 2012.
[21] M. Harris, “Maxwell: The most advanced CUDA GPU ever made,”

Nvidia, 2014.
[22] Nvidia, “NVIDIA GF100 whitepaper,” 2010.
[23] H. M. Markowitz, “The elimination form of the inverse and its application

to linear programming,” Manage. Sci., vol. 3, no. 3, pp. 255–269, Apr.
1957. [Online]. Available: http://dx.doi.org/10.1287/mnsc.3.3.255

[24] N. Sato and W. F. Tinney, “Techniques for exploiting the sparsity or
the network admittance matrix,” IEEE Transactions on Power Apparatus
and Systems, vol. 82, no. 69, pp. 944–950, Dec 1963.
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