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ABSTRACT
We introduce a hierarchical sparse matrix representation (HiSparse)
tailored for the graphics processing unit (GPU). �e representation
adapts to the local nonzero pa�ern at all levels of the hierarchy and
uses reduced bit length for addressing the entries. �is allows a
smaller memory footprint than standard formats. Executing algo-
rithms on a hierarchical structure on the GPU usually entails sig-
ni�cant synchronization and management overhead or slowdowns
due to diverging execution paths and memory access pa�erns. We
address these issues by means of a dynamic scheduling strategy
speci�cally designed for executing algorithms on top of a hierar-
chical matrix on the GPU. �e evaluation of our implementation of
basic linear algebra routines, suggests that our hierarchical format is
competitive to highly optimized standard libraries and signi�cantly
outperforms them in the case of transpose matrix operations. �e
results point towards the viability of hierarchical matrix formats
on massively parallel devices such as the GPU.
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1 INTRODUCTION
Sparse matrices algebra has become an ineluctable workhorse
across various scienti�c computing applications and its perfor-
mance plays a de�ning part in the overall algorithmic performance.
To a�end to the ever demanding performance needs, a variety of
sparse matrix formats have been proposed over the years covering
virtually all available hardware architectures. While early formats
such as the coordinate list (COO) and compressed sparse rows (CSR)
are still predominant across hardware architectures and standard
libraries, alternative formats may have the edge on them in special
se�ings. In particular, the compressed sparse blocks format (CSB)
has been shown to scale well on parallel CPU architectures and to
yield steady performance for transpose based operations [1].

Given the rising popularity of the graphics processing unit (GPU),
classical formats have been adapted, tuned, or optimized for these
low cost parallel architectures [2–7]. Unfortunately, to the best
of our knowledge, hierarchical formats have not been explored in
this context and are widely considered unviable for GPU execu-
tion as they introduce highly dynamic execution paths, which is
detrimental for performance on graphics hardware.

In this work, we tackle this issue by providing a hierarchical
sparse matrix format suitable for the GPU. Hierarchical matrix rep-
resentations are not new. �eir potential has been recognized in
early work on the �nite element method [8]. Nonetheless their lack
of popularity can be a�ributed to the burden of accommodating
linear algebra primitives to the hierarchical representation. It has
been observed in earlier work on vector processors that the use
of hierarchical formats can lead to signi�cant memory savings [9].
�is storage cost reduction is a key motivation behind our e�ort to
accommodate a hierarchical format on the GPU, where memory re-
sources are much more limited. Furthermore, a hierarchical format
o�ers several additional advantages: it scales well for large matrices,
allows for implementing algorithms in a divide an conquer manner,
and permits sharing/duplication of sub-matrices between di�erent
matrices and within a single matrix.

We show that by applying dynamic GPU scheduling strategies
to algorithms built on top of this format, competitive performance
can be achieved. We make the following contributions:

• We propose the HiSparse sparse matrix format, which sup-
ports a combination of various node types and thus can
adapt to the local structure of the matrix. Each node is
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transparent to transpose operations and thus algorithms
built on top of the format achieve similar performance for
operations on a transpose matrix. Being hierarchical, the
bit length of indices can be reduced and thus the overall
memory requirements are generally below those of COO
and CSR.

• We describe a dynamic GPU scheduling framework that
allows implementing algorithms on top of HiSparse. Algo-
rithms can implement specialized routines for the di�erent
node types and dynamically adjust the number of threads
used for each step of the implementation.

• We provide a typical implementation of SpMV using our
dynamic scheduler, which traverses the hierarchical struc-
ture of the sparse matrix in parallel, combining the local
SpMV results into a global output vector.

• We demonstrate a typical implementation of sparse ma-
trix add, which concurrently traverses the hierarchical
structure of two input matrices, determines the number
of colliding entries in both hierarchies, dynamically allo-
cates and generates the hierarchy of the resulting matrix
alongside the non-zero entries.

�e remainder of this paper is structured as follows. First, we
provide a brief overview of the most common sparse matrix formats
and review related work (Section 2). �en, we introduce the HiS-
parse format and provide an analysis of its memory requirements
(Section 3). A�er presenting our scheduling framework (Section 4),
we show how SpMV (Section 5) and sparse add (Section 6) can be
implemented and we analyze their performance (Section 7). We
conclude by summarizing our �ndings and provide an outline of
more complex algorithms that could e�ciently be implemented on
top of HiSparse (Section 8).

2 BACKGROUND AND RELATEDWORK
�e most common sparse matrix formats are Coordinate list (COO)
and Compressed Sparse Row (CSR). COO is the most natural format,
it consists of three arrays, storing the column index, row index and
value of each non zero of the sparse matrix. CSR maintains identical
arrays for column indices col id and valuesval sorted in row major
format. However, row indices are compressed such that the entry
row ptr [i] points to the index of the �rst entry of the row i within
val and col id . Whereas the last entry row ptr [m + 1] = nnz, with
nnz being the number of non zeros of the matrix. CSR enables an
easy way to process individual rows in parallel.

2.1 Alternative Sparse Matrix Formats
Besides COO and CSR, several other specialized formats have been
proposed. ELLPACK pads rows so that they are all equally sized.
For matrices with small row length variation, this approach can
signi�cantly boost the performance of algorithms, especially on
parallel devices like the GPU. However ELLPACK has severe issues
with irregular row lenghts, since much of the data needs to be
zero padded. �ere are several ELLPACK format adoptions, like
Hybrid [10], Sliced ELLPACK [3] and ELLPACK-R [4]. However,
a common shortcoming of those formats is dealing with highly
irregular matrix structures.

A common way of dealing with load balancing issues on parallel
architectures is spli�ing matrices into two dimensional blocks. For
instance, the CSR5 format [7] arranges the non zeros into tiles (2D
blocks) of �xed size. Each tile can be processed individually. Several
block formats organize blocks in a two layered hierarchy, where
the top layer manages the blocks and the bo�om layer stores the
non zeros. Blocked CSR (BCSR) [11] divides a sparse submatrix
into dense blocks and stores blocks in a CSR format. �is approach
is ine�cient for very sparse matrices [12]. Compressed Sparse
Blocks (CSB) [1] uses a COO representation of sparse submatrix
blocks. Rows are not favored over columns, which is crucial for
transpose multiplication [13]. Since the blocks are always stored
in COO format, CSB is ine�cient for locally dense matrix subre-
gions. Mixed type formats try to deal with this limitation: Adaptive-
blocking hierarchical storage format (ABHSF) [14] stores blocks in
a dense, CSR, COO or bitmap format. �ere are numerous similar
formats, like the Cocktail format [5], BRC (Blocked Row-Column)
[15], BCOO (Block-based Compressed Common Coordinate) [16],
ESB (ELLPACK Sparse Blocks) [17] or JAD (JAgged Diagonal) [18].

�ere is no reason to limit block-based formats to two layers.
HiSM [9], for instance, builds a full hierarchy of �xed size COO
nodes and RCSR [19] stacks CSR nodes of arbitrary size on top of
anther. As nodes can be limited in size, the bit length for COO or
CSR indices can be reduced and an overall compression compared
to standard formats can be achieved. Stathis et al. [9] point out that
such a format could be well suited for vector processors, but show
results only for a hypothetical architecture. While the processing
of individual nodes is potentially e�cient on vector processors, a
hierarchical format poses a series of challenges for the scheduling
on massively parallel devices. �us, it is not surprising that there
exists no implementation of such a hierarchical format for the GPU.

2.2 GPU SpMV
One of the most common, if not the most standard test for sparse
matrix formats is sparse matrix-vector multiplication. For CSR
matrices, a simple strategy assigns one thread per row. Bell and
Garland call this approach the scalar CSR kernel [10]. However, it
entails severe performance limitations due to ine�cient memory
access pa�erns and load balancing issues. Multiple approaches were
introduced to counterbalance these issues. One can use multiple
threads per row [2], apply grouping and reordering techniques
[6, 20], or dynamically choose the number of threads for each
row [21, 22]. Load balancing issues can be combated dynamically by
using a global row counter [23] or searching for a work load balance
considering rows and/or nnz [24, 25]. Liu et al also introduced an
SpMV algorithm speci�cally for heterogeneous processors [26].

3 HISPARSE FORMAT
Previous work on block-based formats for the CPU considered
various setups, ranging from two level hierarchies to multi-level
hierarchies of sparse, dense and mixed types of blocks. However no
multi-level hierarchical format has been implemented for the GPU.
�is is not surprising, as the hierarchical nature of such formats
introduce highly dynamical execution paths, performance is likely
to degrade on massively parallel environments such as the GPU.
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N4 = [1, 7, 6, 3,
    1, 0, 4, 9,
    3, 3, 2, 2,
    2, 5, 5, 0]

N1 = {
  = 1,
  = [(3,0)],
  = [0x11]
}

N2 = {
  = 2,
  = [(1,0),(3,1)],
  = [0x21, 0x40]
}

N1

N2
(0x10)

(0x0)

N3 = {
  = 4,
  = [(0,1),(0,3),(1,0),(3,2)],
  = [3,3,1,5]
}

N3
(0x20)

N4
(0x40)

Figure 1: Example with d = 4. Nodes within the hierarchical
HiSparse format can either be dense or sparse. Coordinate
pairs are packed together.

3.1 Node Types
Starting from the observation that conceptually working on mul-
tiple 2D blocks of data in a hierarchical tree can be e�ciently
performed on the GPU, we propose and evaluate HiSparse, a hier-
archical block-based data structure for sparse matrices. Similar to
other hierarchical formats, e.g., HiSM [9], HiSparse matrices are
constructed by nodes of size d ×d , whereas each node’s representa-
tion depends on the sparsity pa�ern it describes. In HiSparse, nodes
can either be stored in a sparse or dense format, as illustrated with a
small example in Figure 1. As dense format we use a linear array of
d2 entries stored in row-major order. As sparse format, we employ,
what we call, the COOX format, which is the same as COO, with
the minor di�erence that it is designed to enable threads to directly
load X entries at once using e�cient vector load instructions on
the GPU. For example, COO4 enables each thread to load 4 entries
at once. To enable vector loads, it is necessary to add padding if
the number of non-zeros within the node is not a multiple of X or
if the appropriate memory alignment is not given. As the size of
each sparse node depends on the number of non-zeros it holds, we
additionally store each node’s nnz before the COO arrays.

Using di�erent node formats enables e�cient processing of
nodes in respect to their sparsity pa�ern. If a node contains a
high percentage of entries, using a dense type not only reduces the
required amount of storage, but also reduces the overhead during
computation. Obviously, the same applies for using an appropriate
sparse type if only a low percentage of entries is non zero. In gen-
eral, the HiSparse format allows to implement and mix arbitrary
node types. Consequently, it would be possible to introduce a local
ELLPACK or CSR/CSC format. Sparse types can also be mixed, that
is, the best ��ing sparse types can be used for nodes with di�erent
sparsity pa�erns. For nodes with one entry only, we always use
COO1 as padding would multiply the memory and computation
overhead. For two entries COO2 is best suited, and so on.

�e interpretation of a node’s values depends on its level within
the hierarchy. Inner nodes of the hierarchy maintain pointers to the
child nodes as values, whereas leaf nodes store the corresponding
matrix value. Each child pointer corresponds to an aligned data

array pointer relative to the start address of the matrix. By guaran-
teeing that nodes are 16 byte aligned, which is necessary for vector
loads, we can use the 4 lowest bits to encode additional information
or increase the addressable amount of memory, or both. In fact,
addresses will always have zero bits there, and we may as well
make use of them to increase memory e�ciency. We primarily use
them to distinguish between the di�erent node types, by simply
enumerating them. For example, if there are 4 di�erent node types,
say dense, COO1, COO2 and COO4, then we use a zero, one, two
and three respectively in the lowest 2 bits of the pointer to identify
them. When the submatrix covered by a child of an inner node
contains no non-zeros, the child pointer is not included in sparse
nodes and set to a null value for dense nodes. As a consequence,
data is only stored for nodes, which contain leaves with non zero
values in their tree path.

�e proposed dense and COOX format can be seamlessly used
in a transposed manner. For example, the addressing of rows and
columns can simply be altered for dense nodes, for sparse nodes a
transpose operation can be carried out in e�cient on chip shared
memory, as the number of entries per node is relatively small. Even
nodes stored in CSR could e�ciently be transposed in that manner.
�us, the matrix transpose can be computed on the �y as the algo-
rithm operates on the matrix. �erefore, we propose to decouple
the matrix content and its state, such that the matrix content is
unchanged when a matrix is transposed. Instead, a boolean in the
matrix state is �ipped, indicating whether a transposition is to be
applied when traversing the nodes of the matrix. Furthermore, we
also include a scaling factor, which is applied to every leaf value
when it is accessed. Consequently, HiSparse operations on the
matrix must incorporate this state in the implementation, possibly
a�ecting the traversal order of the matrix or changing its values.

3.2 Data Conversion
Format conversions are o�en necessary in practice, thus their cost
should not be ignored. Conversion between COO and HiSparse
with local COO nodes is simple, since from a local standpoint the
formats are similar. Creating a matrix in HiSparse format requires
the generation of the tree hierarchy. We perform this conversion in
two basic steps. First, we calculate the required memory and create
a helper tree skeleton in a top-down approach. To this end, we
repeatedly in-place sort the COO entries intod×d bins, whereas the
bins correspond to nodes. Repeating this process until the leaf level
is reached, we compute the number of entries for each node and its
memory requirements. Once all nodes are processed, the required
memory is allocated as one large chunk, which serves as pool for
the allocation of the individual nodes. �e second step, �lling the
nodes, is very e�cient, since the tree structure is already known
at this point and the entries are assigned to the leaves. We process
the tree in a bo�om-up fashion, allocating memory from the pool
and inserting the non-zeros. A�er creation of the node, we write
its position to the helper skeleton, and start the processing of the
parent as soon as all children of that node are completed. Obviously,
this approach o�ers the possibility for substantial parallel execution.

A hierarchical format o�ers the ability to perform editing op-
erations e�ciently compared to traditional formats. For example,
when removing or adding entries to a matrix stored in CSR, all
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entries that lie behind this value in memory need to be copied. In
HiSparse, only the a�ected nodes need to be altered or generated
anew. �us, a hierarchical format is especially well suited for dy-
namic scenarios that involve small edits to matrices, inserting or
removing data locally. Also note that with HiSparse, matrices can
share nodes and thus common sub-parts in matrices. Consider a
scenario in which a matrix is edited by adding few entries and
subsequent steps require both the original and the edited matrix.
While other formats would require copying and editing the �rst
matrix, HiSparse could simply add those nodes that are a�ected by
the insertion operation and share the unchanged part among both
matrices, saving both operations and storage. �e importance of
matrix editing is highlighted by the recent interest in formulating
graph algorithms in terms of linear algebra operations [27].

3.3 Storage Analysis
It has been empirically shown that using a hierarchical structure
o�ers the potential to reduce the amount of memory required for
storing the matrix [9, 19]. For HiSparse, we analyze the storage
gains mathematically and prove that the worst case memory re-
quirements are asymptotically optimal. Without loss of generality,
consider a matrix M of sizem ×m, stored in HiSparse with a node
size of d , a tree depth of D = logd (m), L leaf nodes, and N inner
nodes. Let nnzLi be the number of non zero entries within a sparse
leaf Li . Additionally, let b be the number of bits required to store a
single matrix element. Each node stores the number of non zeroes
in a 32 bit unsigned integer. Since the coordinates within a node
are limited in size by log2(d), they can be stored in a packed storage
format. �us, the number of bits required for storing a single leaf is

Bi = nnzLi · (2 · log2(d) + b) + 32.

Since the sum over all leaves
∑L
i=0 nnzLi = nnz (with nnz being the

number of non zeroes of the input matrix), the amount of storage
required to store all leaves is nnz · (2 · log2(d) + b) + 32 · L.

In case the tree is close to a full hierarchy, the number of inner
nodes can be described as L

d2 +
L
d4 +

L
d8 + ..., which is L ·∑i

1
d2i < L,

leading to the memory requirements of the inner nodes being
smaller than the leaf nodes. In any case, the overall memory re-
quirements (in bits) is

BHiSparse ≈ (1 + N /L) ·
(
nnz · (2 · log2(d) + b) + 32 · L

)
,

when the number of bits required for the pointer/o�set to a child
node is also b.

�e storage requirements of the COO and CSR formats are
BCOO = nnz · (2 · log2(m) + b),
BCSR = nnz · (log2(m) + b) +m · log2(nnz).

COO stores two coordinates that must be able to holdm (log2(m)
bits) and the values themselves. �e CSR format stores only one
coordinate, but requiresm row o�sets that can point to an arbitrary
matrix element of the matrix (log2(nnz) bits). Usually, 32 bit un-
signed integers are used for coordinates and o�sets. �is also makes
it apparent that HiSparse can reduce the memory requirements if d
is signi�cantly smaller than m, such that the memory saved by the
bit reduction is higher than the overhead of the inner nodes. Also,
note that nodes are stored in dense form, if the memory costs of
storing it in sparse format are higher. Consequently, this switch

Figure 2: Memory consumption per non-zero of HiSparse
compared to the standard formats COO and CSR for matri-
ces stored in single precision �oating point (less is better).
For double precision, all requirements increase by 4.

reduces the memory requirements for denser matrices and for inner
nodes in general, which are more likely to contain a higher number
of entries.

In terms of asymptotic memory consumption, the HiSparse
format is equal to CSR and COO. Even ignoring dense nodes,
the memory consumption of a single node is always bounded by
Bnode = O(d2) = O(1), as it can hold a maximum of d2 elements
and their local coordinates. �us, to evaluate the asymptotic mem-
ory consumption, we are only interested in the overall number
of nodes. In the extreme case of a full matrix, L = nnz/d2 and as
mentioned before N < L. �us,

Bf ull = Bnode · O(nnz/d2) = O(nnz).

However, when there are fewer non-zeros the memory analysis
becomes more complicated. In the extreme case, when nnz = 1, an
inner node for each level of the hierarchy is needed to reach the
leaf level, thus N + L = logd (m). Starting from such a con�gura-
tion, we can add a second non-zero which shares as few nodes as
possible with the previously present non-zeros. �is corresponds
to sharing only the root node, adding logd (m) − 1 nodes. �ere
are still d2 − 2 non-zeros that can be added to the matrix that each
require logd (m) − 1 additional nodes, i.e., until all nodes are present
on the second level of the hierarchy. �is idea can be generalized to

N + L ≤1 · logd (m) + (d2 − 1) · (logd (m) − 1)+
+ ((d2)2 − d2) · (logd (m) − 2)+ (1)

+ ((d2)3 − (d2)2) · (logd (m) − 3) . . . ,

essentially counting the nodes that are added when as many non-
zeros are added in such a way that the entire level is fully �lled
with nodes. �e number of such fully �lled levels can be computed
with the log over the number of non-zeros. �us, for simplicity, let
λ be dlogd2 (nnz)e. �e previous formula can then be wri�en as a
sum:

N + L ≤
λ∑
i=0
(d2i − bd2i−1c) · (logd (m) − i)

and has an upper bound in

N + L < d2λ+1(logd (m) + 1).
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dequeue

Dense inner nodes 

Process node enqueue

Sparse inner nodes

1 - 8 entries

> 8 entries

Dense leaf nodes

Sparse leaf nodes

1 - 4 entries
4 - 16 entries

> 16 entries

Figure 3: Each node type has at least one dedicated queue.
Sparse node types maintain di�erent queues for varying
node entry counts and the thread count used to process a
node depends on the speci�c queue. Consequently, nodes
with few entries are processed with fewer threads. For ex-
ample, sparse inner nodes are split into two queues, one con-
taining nodes with one to eight entries, the other containing
all nodes with more than eight entries.

�e complete derivation is shown in the appendix. Using the rela-
tionship of λ, the equations boils down to

N + L < nnz · d2(logd (m) + 1) and
B = Bnode · O(nnz · logd (m) + nnz)
B = O(nnz · logd (m))

Comparing this result to BCOO , it becomes apparent, that asymp-
totically they are identical.

In practice, the constants do ma�er and e�cient memory ac-
cess requires to use one of the supported memory types to store
coordinates. Using node dimensions d <= 256 enables to store the
coordinates within a single byte integer, thus, reducing the stor-
age amount signi�cantly compared to the sparse matrix formats
COO and CSR. Figure 2 shows a practical comparison of memory
consumption between HiSparse, COO and CSR for some example
matrices. For further details regarding the test matrices see Figure 4
and Section 7. HiSparse requires on average about 50% less memory
than COO and 20% less memory than CSR. For special non-zero
distributions as, e.g., in Rucci1, CSR can be slightly more e�cient
then HiSparse. As we switch to dense nodes when there are many
entries, the memory overhead of HiSparse for a dense matrix is
negligible in comparison to a complete dense storage (4 bytes per
non zero). Also, note that COO always requires 12 bytes per non
zero, since three 4 byte integers are stored for each non zero.

4 DYNAMIC SCHEDULING
A�er overcoming the �rst levels of a tree structure, a hierarchical
description potentially o�ers large amounts of parallel workloads,
as nodes on the same level and nodes on di�erent levels can be
worked on in parallel. However, traversing non-complete trees
poses a scheduling problem. From the perspective of a single node,
the number of threads that can be launched to process its children
varies strongly between nodes. As threads on the GPU must be
launched in form of kernels, which should at least contain hundreds
of threads, this becomes di�cult on the GPU. At the same time, the

number of elements per node and thus the workload per node may
vary greatly throughout the tree structure. �us, if we simply as-
signed one thread to each node, each thread may execute a di�erent
number of instructions (proportional to the elements in the node),
leading to execution divergence and reduced performance. �e
issue becomes worse when considering di�erent node types, e.g.,
sparse and dense, not only leading to di�erent number of executed
instructions, but completely di�erent execution paths.

To overcome these issues, we propose to use a dynamic schedul-
ing approach on the GPU. In the ensuing discussion, we will use
the terminology of NVIDIA CUDA [28]. In principle, every algo-
rithm running on one or multiple HiSparse matrices, must be able
to traverse the node hierarchy of a single or multiple matrices in
parallel. Furthermore, it will execute functions on one node or a
combination of nodes. One can expect good performance, if

• a suitable number of threads can be assigned to a node,
i.e., dense nodes provide parallel workloads for multiple
threads, while sparse nodes that only hold a single element
will only need one thread for processing.
• only threads working on the same node type and facing

equal workloads end up in the same warp, i.e., thread di-
vergence is avoided.

4.1 Node-based�euing
To this end, we propose a dynamic scheduler that collects to-be-
processed nodes in queues on the GPU. Whenever an inner node is
processed and threads should be started for the child nodes, these
nodes are put into a queue instead and are stored for later execution.
A�er the number of nodes in a queue reaches a certain threshold,
we can launch a kernel of su�cient thread count to process these
nodes e�ciently. To tackle the requirement of equal workloads,
we provide queues for each node type and for di�erent numbers
of elements contained per node. As providing speci�c queues for
every possible element count is infeasible, we use a binning strat-
egy, assigning queues to ranges of elements, as shown in Figure 3.
Considering operations that involve multiple matrices, like, e.g.,
matrix-matrix addition, queues can also be set up for combinations
of node types and element counts. To provide su�cient �exibility,
our CUDA/C++ scheduler implementation takes a speci�cation of
the queue setup and information that should be stored in queues as
template arguments and generates the appropriate queuing setup
during compile time. As underlying queue implementation we use
a queue with state �ags for each element [29].

While storing nodes in queues solves the issue of small kernel
launches, it introduces another problem. Starting kernels from the
CPU, we would have to copy the queue �ll level from the GPU
to the CPU a�er every step of the algorithm, i.e., a�er every level
of the tree has been processed. �is introduces synchronization
barriers, leaves the GPU under-utilized, and prohibits load balanc-
ing between nodes of di�erent levels of the tree. One solution to
this problem would be a so-called persistent threads or megakernel
approach [30], launching persistently running blocks which con-
tain code for all supported node types. Such an approach has the
downside that it can signi�cantly hurt performance as the resource
requirements (registers, shared memory) of the megakernel are
determined by the node type with the highest requirements [31].
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4.2 GPU-Controlled Dynamic Scheduling
To avoid both a constant back and forth between CPU and GPU
and suboptimal resource usage we propose a GPU-controller that
starts kernels using dynamic parallelism directly from the GPU.
�is controller takes over the responsibility of the CPU in terms
of determining queue �ll levels and launching kernels. Typically,
it is su�cient to use a single warp which stays active until the
entire algorithm is completed. To this end, the warp keeps iterating
the same loop, checking all queue �ll levels whether there are
enough queued nodes to launch a kernel of appropriate size and
initiates its execution. Each block of this kernel is assigned to a
region of the queue and draws as many elements from the queue
such that all threads can execute coherently, e.g., a block of 128
threads that is assigned to a queue of nodes that should be processed
by 32 threads each will dequeue four nodes. �e entirety of this
process leads to all threads of a block working on the same node
type and having similar workloads, consequently, ful�lling the
previously mentioned requirements. At the same time, the kernels
launched using dynamic parallelism are large enough to achieve
good performance. Note that if dynamic parallelism was used to
directly start threads to work on the children of a parent node, the
kernel would contain very few threads (possibly a single thread
only) leading to all kinds of under-utilization and severe overheads.

To increase performance, the threads of the controller block can,
each check a queue in parallel, and all launch kernels at the same
time. We starts all kernels into separate streams such that they
can execute concurrently. Furthermore, the controller needs to
keep track of currently running blocks. To this end, we employ an
atomically operated global counter, that the controller increments
by the number of launched blocks when it starts a kernel. One
thread of each �nished block decrements the counter by one. �is
allows the controller to react on situations when the number of
running blocks becomes low by starting kernels which are below
the desired size. �is situation usually happens at the beginning of
the algorithm when only the root node can be used and subsequent
nodes should be started immediately; and when the algorithm is
about the �nish and only few nodes are le� in the queues which
should be worked on to complete the algorithm. �e controller
needs to stay active until all queues are empty and the block counter
reaches zero, guaranteeing that no new nodes will be enqueued
anymore.

Our scheduler guarantees full utilization of threads by adjusting
the number of nodes executed within a warp/block. For instance,
consider a block size of 256. For small nodes, which require only 4
threads, we combine 64 nodes to be worked on in parallel so that
all 256 threads are active. For larger nodes, e.g., 32 threads required,
we combine 8 nodes to be worked on in the block, thus keeping all
threads active. A heavy node (256 threads required) will be worked
on by the entire block as whole.

5 SPARSE MATRIX - DENSE VECTOR
MULTIPLICATION

As a �rst linear algebra application, we implemented SpMV using
our scheduler. Multiplying a HiSparse matrix with a dense vector
corresponds to a top-down parallel tree traversal. We simply use
queues for each node type and distinguish between nodes that only

contain a single entry, few entries (up to 32), and many entries
(more than 32). Each queue entry is not only associated with a
node, but also holds a row and column o�set, as well as the depth
of the node in the hierarchy. In this way, the input and output
indices of the corresponding dense vectors can be computed when
processing leaf nodes.

Initially, the queues are �lled by processing the root node of the
input matrix. While traversing the node hierarchy, the lower bits of
the node pointers are used to identify each nodes type and the cor-
responding queues are used for enqueue. When reaching leaf nodes,
a simple local SpMV algorithm is executed as shown in Algorithm 1.
Please note that thanks to our scheduler (sec. 4), writing algorithms
does not involve writing kernels but rather individual functions for
speci�c node types in the hierarchy. Transposition is trivially han-
dled by swapping the coordinates. As the di�erent threads might
access the same output element, we use atomic operations to write
the result.

HiSparse Leaf SpMV
1: w ← dequeue(Q)
2: node ← дetNode(w .node ptr )
3: rowO f f set ←w .rowO f f set · d
4: colO f f set ←w .columnO f f set · d
5: for all i ← 0 to node .numEntries do in parallel
6: coord ← node .coords[i]
7: if State .transposed == true then
8: swapCoord(coord)
9: end if

10: column idx ← colO f f set + coord .column
11: row idx ← rowO f f set + coord .row
12: v ← x[column idx] · node .values()[i] · State .scale
13: atomicAdd(y[row idx],v)
14: end for

Algorithm 1: HiSparse implementation for processing a leaf node
for SpMV. A�er dequeue, the global o�sets w.r.t the input matrix
A of node dimension d are calculated. Subsequently, each node
entry is multiplied with the input vector x and atomically wri�en
to the output vector y.

6 SPARSE MATRIX ADDITION
As a second application, we implemented addition of two HiSparse
matrices, which requires a dual top-down parallel tree traversal. To
this end, the addition follows the same basic concept as HiSparse
matrix-vector multiplication. We set up queues for each combina-
tion of node types and maximum number of elements in either node.
Starting from the root nodes, common nodes of both input matrices
are traversed together. If a speci�c node within the tree hierarchy
only exists in one matrix, it is simply copied into the output matrix,
for which we set up an additional queue and copy function. Since
the size of the output matrix is not known in advance, a memory
pool of su�cient size is allocated before the addition is executed.
Since nodes are processed independently, a memory allocator is re-
quired to allocate memory from the pool. We use a simple allocator
using an atomic counter.
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When two nodes are processed jointly, it is necessary to �rst
compute the size of the output node in order to allocate the cor-
responding amount of memory from the pool. In case of a dense
output node this step is trivial, since the output size is statically
known. For sparse nodes, it is necessary to compute the number
of union entries of both nodes. Since entries of nodes are stored
as arrays in a COO format, it is not possible to directly access two
corresponding values at a speci�c coordinate. �e general approach
is to �rst count the number of common entries and subtract it from
the sum of total entries. A�er allocating the memory, the input
nodes are processed and the output node can be �lled. For inner
nodes the value corresponds to a pointer to a child node. Since the
location of the children is not known when processing the parent,
we store a pointer to the value in the queue entry of the child. Con-
sequently, during processing of the child, we set the pointer in the
parent.

Sparse nodes. For simplicity, we do not distinguish between dif-
ferent COOX nodes as they only di�er in terms of padding. For
any combination of COOX nodes, we provide two queues, distin-
guishing between nodes that can e�ciently be processed in shared
memory and those that exceed the shared memory requirements.
In the second case, we work on batches that �t in shared memory
at once, generating the output in batches. In any case, we start by
fetching the coordinates of both nodes and sort them in a combined
manner, allowing to easily identify and count the common entries.
Next, we allocate the required storage for the output, compute a
pre�x sum over the unique entries to calculate the output positions
and write the entries to the new node or enqueue the child nodes
for processing. To choose the appropriate queue for enqueue, we
rely on the node type stored alongside the pointer and we fetch the
entry count from the child nodes to determine whether the data �ts
in shared memory. As (according to our de�nition) nodes are stored
in row-major order, we can avoid sorting and simply merge the
coordinate arrays if neither of the matrices is transposed, yielding
slightly be�er performance in this cases.

Dense nodes. Handling two dense nodes is trivial, as both can be
jointly traversed. In case of sparse/dense mixed case, we already
know that a dense output node will be generated. To �ll the node,
we iterate over the dense array, bu�ering it in shared memory.
Concurrently, we fetch the entries from the sparse node and use
each values coordinates to a�ach the entry to the value stored for
the dense node. Again using one thread for each dense entry, we
combine the non-zeros of the dense node with the a�ached entries
from the sparse node and �ll the output node accordingly / enqueue
the child nodes.

7 EVALUATION
We compare the performance of our HiSparse implementations to
that of popular libraries on �e University of Florida Sparse Matrix
Collection [32]. Statistics related to our format are shown on typical
matrices in Figure 2. We also include a dense matrix and a special
matrix which has a very localized non zero pa�ern.

Our pretests have shown that HiSparse performs well with d =
128 and mixed sparse nodes of types COO1, COO2 and COO4.
Whereas COO1 is used for nodes with only a single non zero entry,

Matrix name
rows × columns

Structure
non-zeros

CSR: row mean (std-dev), max
HiSparse nodes: #sparse, #dense, mean entries

HiSparse leaves: #sparse, #dense, mean nnz
asia osm ASIC 320k

12.0M×12.0M 321.8k×321.8k
25.4M 2.6M

2.1 (0.5), 9 8.2 (503.0), 203.8k
236.5k, 3, 6.6 387, 0, 363.1
1.6M, 0, 15.2 140.5k, 0, 17.8

bone010 cage12
986.7k×986.7k 130.2k×130.2k

71.7M 2.0M
72.6 (15.8), 81 15.6 (4.7), 33
182, 0, 496.0 49, 0, 461.1

90.3k, 0, 792.8 22.6k, 0, 89.0
dense FullChip

5.0k×5.0k 3.0M×3.0M
25.0M 26.6M

5000 (0.0), 5.0k 8.9 (1806.8), 2.3M
1, 0, 16373.3 2.8k, 0, 182.0

79, 1521, 1010.9 510.8k, 0, 51.1
in 2004 kkt power

1.4M×1.4M 2.1M×2.1M
16.9M 14.6M

12.2 (37.2), 7.8k 7.1 (7.4), 96
4.3k, 0, 787.9 920, 0, 829.9

143.3k, 209, 96.7 763.5k, 0, 18.1
ldoor mip1

952.2k×952.2k 66.5k×66.5k
46.5M 10.4M

48.9 (11.9), 77 155.8 (350.7), 66.4k
2.1k, 0, 130.8 20, 0, 15843.4

278.6k, 0, 166.0 6.0k, 575, 425.5
parabolic fem poisson3Da

525.8k×525.8k 13.5k×13.5k
3.7M 352.8k

7 (0.2), 7 26.1 (13.8), 110
448, 0, 170.6 1, 0, 10793.0
76.4k, 0, 47.1 10.8k, 0, 31.7

special webbase
7.0M×7.0M 1.0M×1.0M

52.3M 3.1M
7.5 (125.3), 6.3k 3.1 (25.3), 4.7k
183, 9, 4199.9 2.3k, 0, 65.5
806.4k, 0, 63.8 151.5k, 0, 19.5

Figure 4: Overview of some matrices used in performance
evaluation alongside statistics about storing them in CSR or
HiSparse.
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COO2 is used for nodes with two entries and COO4 is used for nodes
with three or more entries. Note, that nodes with a high number
of entries are still stored in a dense format. For more information
about those node types see Section 3.

SpMV. For evaluating SpMV, we compare HiSparse to cuSparse
CSR [33], cusp CSR [34], Naive SpMV [35], bhSparse [7], clSpMV [5],
and yaSpMV [16]. bhSparse, clSpMV and yaSpMV do not provide
an implementation for a transposed SpMV. clSpMV and yaSpMV
only work with single precision �oating point. As cusp does not
provide means to directly multiply a matrix as transposed, the
costs of computing the transpose are included in the performance
measurement unless explicitly stated otherwise. �e used hardware
for performance measurements consists of a i7-4790k 4x4.4 GHz
CPU and a NVIDIA GeForce GTX 1080 graphics card [36] (compute
capability 6.1).

Prior to performance measurements each operation was executed
with 20 warm-up iterations. �e performance measurement itself
is the average time of executions measured over 100 iterations. �e
performance in the evaluation is reported as the throughput in
GFLOPS = nnz · 3/ts · 10−9. �e factor 3 comes from multiplication
of the input vector with the non-zero, the multiplication with a
scaling factor and the addition to the output vector.

Figure 5 provides the performance comparison for SpMV and Sp-
MVT in double precision �oating point, average number for single
and double precision are shown in Table 1. Comparing performance
to state-of-the-art approaches and formats that are speci�cally de-
signed to reach high SpMV throughput on GPUs is challenging
as SpMV has received a lot of a�ention and a hierarchical for-
mat entails signi�cant scheduling overhead compared to simply
processing the non-zeros in a bulk-like fashion. As can be seen,
HiSparse is in general not outperforming the other libraries in the
non-transpose case, with the exception of the matrix special, which
was speci�cally constructed to illustrate that for certain sparsity
types HiSparse delivers best results. Especially when comparing
to the formats speci�cally designed for SpMV (bhSparse, clSparse,
and yaSpMV), which are on average up to 3× faster than HiSparse,
it becomes apparent that traversing a hierarchy for multiplying
every entry of a matrix once is not the most e�cient. However,
comparing to standard libraries, the performance of HiSparse is
competitive. Since cuSparse and cusp show exceedingly bad perfor-
mance with the matrices Fullchip and circuit5M (up to about 50×
slower than Hisparse), their average performance is even below
HiSparse. �is indicates that HiSparse is a consistent performer
with low standard deviation.

In contrast to SpMV, HiSparse achieves the best performance
with transposed matrices. It outperforms both cuSparse and cusp
as well as a naive SpMVT implementation based on atomic addition.
For single precision SpMVT HiSparse performs on average 7× be�er
than cuSparse, 19× be�er than cusp and 5× faster than naive and
for double precision the average improvement is 6× compared to
cuSparse, 13× to cusp and 5× be�er than naive. �e performance
of HiSparse hardly changes from SpMV to SpMVT. �e only real
di�erence is the dense matrix, which is due to a di�erent memory
access pa�ern for all dense nodes. Again, HiSparse shows very
li�le variance in terms of execution speed, since it is less dependent
on the sparsity pa�ern of the matrix.

SpMV SpMVT
Library mean s.dev mean s.dev

HiSparse 3.45 3.45 3.45 3.88
cuSparse 23.51 67.27 24.16 37.78
cusp 4.28 8.65 67.31 64.85
Naive 22.51 57.80 18.11 42.01
bhSparse 1.52 2.51 - -
clSpMV 1.31 1.34 - -
yaSpMV 0.77 0.76 - -

(a) single precision

SpMV SpMVT
mean s.dev mean s.dev

4.68 4.13 4.47 4.62
27.11 76.00 27.90 42.76
5.29 10.40 61.01 58.19

30.71 74.65 23.92 51.92
2.16 3.23 - -
- - - -
- - - -
(b) double precision

Table 1: Average and standard deviation of the execution
time (ms) for SpMV.

(a) SpMV comparison using double precision.

(b) SpMVT comparison using double precision.

Figure 5: SpMV performance in GFLOPS (higher is better).

Addition. Figure 6 provides performance comparisons for sparse
matrix addition (C = A + B and C = A> + B>) and Table 2b shows
averaged results, where A is the input matrix and B is generated
from A by randomly moving each entry within its local neigh-
bourhood for a normal distribution with zero mean and a standard
deviation of 10, generating a di�erent, but similar non-zero pa�ern.
Transposed addition for cuSparse and cusp is done by converting
the input matrix from CSR to CSC, since this is the only / most
e�cient solution. Still, this conversion adds a signi�cant overhead.
In practice, it may amortize over multiple additions if the matrix is
used more than once. �us, Figure 6c ignores transposition cost.
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(a) Sparse matrix addition (C = A + B) using double precision.

(b) Transposed matrix addition (C = A> + B>) using double.

(c) Transposed matrix addition (C = A> + B>) comparison using
double precision without conversion costs.

Figure 6: Sparse Matrix addition performance comparisons
inGFLOPS (higher is better). A is the givenmatrix, B is gener-
ated from A by randomly moving each entry from A within
its local neighbourhood using a normal distribution with
µ = 0 and σ = 10.

As the results show, HiSparse achieves the best behavior for non-
transposed matrices, completing the addition in the shortest time in
all test cases. On average HiSparse is approximately 4× faster than
cuSparse and almost 8× faster than cusp for double precision sparse
non-transposed addition. Again, a large portion of the performance
gain is due to cuSparse having issues with Fullchip and circiut5M.
In the transpose case, when including the cost for transposition,
the performance di�erence becomes even more pronounced, with
HiSparse being approximately 7× faster than cuSparse. However,

non-transpose transpose transpose
w/o conv.

Library mean std-dev mean std-dev mean std-dev

HiSparse 12.79 12.99 26.42 28.23 26.43 28.24
cuSparse 52.08 99.65 165.35 175.95 55.43 100.78
cusp 86.08 86.06 144.29 140.72 79.54 78.30

(a) single precision

non-transpose transpose transpose
w/o conv.

Library mean std-dev mean std-dev mean std-dev

HiSparse 14.94 15.06 27.91 29.20 27.91 29.20
cuSparse 59.73 112.35 195.50 206.95 61.64 112.43
cusp 119.08 101.63 208.03 174.96 126.07 100.07

(b) double precision

Table 2: Average and standard deviation of the execution
time (ms) for sparse matrix addition.

HiSparse also shows a reduction in performance for transposed
matrices compared to non-transposed addition, as nodes cannot
simply be merged anymore and require sorting. Nevertheless, the
performance for the transpose case can be extrapolated from the the
non-transpose case. Even when the cost for transposition is ignored
and cuSparse and cusp only need to merge rows, while HiSparse still
traverses two tree structures in an orthogonal manner, HiSparse
is on average about 2× faster than cuSparse and 4.5× faster than
cusp. In all cases, HiSparse has the lowest standard deviation.

Discussion. By shi�ing the burden to scheduling, the use of hi-
erarchical formats is not much more involved than that of other
existing formats. For instance, the core of our SpMV implementa-
tion covering transpose handling and 4 node types spans about 600
lines of code, which is on par with BhSparse and yaSpMV, though
they do not address the transpose case. Clearly, the e�ort involved
in our method increases with the number of node types but the code
for di�erent nodes remains similar and of local scope. By perform-
ing transposition locally at the node level, our approach is memory
e�cient and can accommodate a wealth of algorithms where the
transpose is not explicitly required by a simple coordinate switch.

8 CONCLUSION
In this paper, we introduced HiSparse, a hierarchical format for
sparse matrices on the GPU. In terms of storage requirements,
HiSparse is more economic than the common CSR and COO for-
mats. In terms of performance, HiSparse proved to be a e�cient
when endowed with the right dynamic scheduling capabilities. We
evaluated HiSparse by comparing our SpMV and sparse addition
implementations to various other libraries. As HiSparse does not
favor rows over columns, a steady performance for non-transposed
and transposed matrix computations is observed. Consequently,
HiSparse SpMV achieved the best performance for the transpose
case, while still being highly competitive for the direct case. We
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showed that our format achieves the best overall performance for
both direct and transpose sparse addition.

We foresee that the strength of a hierarchical format with dy-
namic scheduling becomes more apparent when scaling to multi
GPU and multi node cluster setups, where load balancing across
di�erent nodes is of u�er importance. Also, when sequences of com-
plex operations are involved, the hierarchical format may be more
e�cient, as sequences of operations on nodes can be grouped and
di�erent matrices can share sub trees. Our matrix addition results
lead us the believe that HiSparse could also be a good candidate
for implementing SpGEMM which also requires a dual traversal
of two matrices and a dynamic construction of the output matrix.
Moreover, thanks to our dynamic scheduler the e�ort needed for
incorporating new operations reduces to operations for each node
type while the scheduler takes care of scheduling them e�ciently.
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A ASYMPTOTIC STORAGE ANALYSIS
�e upper bound for the maximum number of nodes required for a
HiSparse matirx (equation 1, Section 3.3) can be reformulated as

N + L ≤
λ∑
i=0
(d2i − bd2i−1c) · (logd (m) − i);

and simpli�ed as follows
λ∑
i=0
(d2i − bd2i−1c) · (logd (m) − i)

<

λ∑
i=0

d2i · (logd (m) − i)

< logd (m) ·
λ∑
i=0

d2i −
λ∑
i=0

i · d2i

= logd (m)
d2(d2λ − 1)

d2 − 1
− d2(−λd2λ − d2λ + λd2λ+1

+ 1)
d2 − 1

< logd (m)(d2λ+1 − d2) + λd2λ+1
+ d2λ+1 − d2λd2λ+1 − d2

=d2λ+1(logd (m) + 1) + λd2λ+1(1 − d2) − d2(logd (m) + 1)

<d2λ+1(logd (m) + 1).

http://cusplibrary.github.io/
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