
Reyes Rendering on the GPU

Martin Sattlecker∗

Graz University of Technology
Markus Steinberger†

Graz University of Technology

Abstract

In this paper we investigate the possibility of real-time Reyes ren-
dering with advanced effects such as displacement mapping and
multidimensional rasterization on current graphics hardware. We
describe a first GPU Reyes implementation executing within an
autonomously executing persistent Megakernel. To support high
quality rendering, we integrate displacement mapping into the ren-
derer, which has only marginal impact on performance. To inves-
tigate rasterization for Reyes, we start with an approach similar to
nearest neighbor filling, before presenting a precise sampling al-
gorithm. This algorithm can be enhanced to support motion blur
and depth of field using three dimensional sampling. To evalu-
ate the performance quality trade-off of these effects, we compare
three approaches: coherent sampling across time and on the lens,
essentially overlaying images; randomized sampling along all di-
mensions; and repetitive randomization, in which the randomiza-
tion pattern is repeated among subgroups of pixels. We evaluate all
approaches, showing that high quality images can be generated with
interactive to real-time refresh rates for advanced Reyes features.

CR Categories: I.3.3 [Computing Methodologies]: COM-
PUTER GRAPHICS—Picture/Image Generation I.3.7 [Computing
Methodologies]: COMPUTER GRAPHICS—Three-Dimensional
Graphics and Realism;

Keywords: Reyes, GPGPU, depth of field, motion blur, displace-
ment mapping

The Reyes (Render Everything You Ever Saw) image rendering ar-
chitecture was developed by Cook et al. in 1987 [Cook et al. 1987]
as a method to render photo-realistic scenes with limited computing
power and memory. Today it is widely used in offline renderers like
e.g. Pixar’s Renderman. Reyes renders parametric surfaces using
adaptive subdivision. A model or mesh can, e.g., be given as a sub-
division surface model or as a collection of Bezier spline patches.
As a direct rasterization of such patches is not feasible, Reyes re-
cursively subdivides these patches until they cover roughly a pixel
or less. Then, these patches are split into a grid of approximating
quads which can be rasterized easily. The Reyes rendering pipeline
is divided into five stages. These stages are not simply executed
one after another, but include a loop for subdivision, which makes
Reyes a challenging problem with unpredictable memory and com-
puting requirements. The pipeline stages are visualized in Figure
1(b) and listed in the following:

Bound culls the incoming patch against the viewing frustum and
possibly performs back-face culling. If these tests do not discard the
patch, it is forwarded to split or in case it is already small enough
for dicing, directly to dice.

Split U/Vsplits the patch into two smaller patches. For Bezier
patches, e.g., the DeCasteljau algorithm can be used. The result-
ing patches are then again processed by bound, to either undergo
splitting again or go to dice.

∗e-mail: m.sattlecker@student.tugraz.at
†e-mail: markus.steinberger@icg.tugraz.at

(a) Killeroo

Supersampled Image

Primitives

Sample

Dice and
Shade

Bound

Split

(b) Reyes Pipeline

Figure 1: (a) Image of the Killeroo model rendered with our real-
time GPU Reyes implementation. (b) The Reyes pipeline is recur-
sive, which makes it difficult problem for GPU execution.

Dice divides the patch into a grid of micropolygons. Each microp-
olygon is then processed by the Shade stage.

Shade computes the shading equations for each grid point of the
diced micropolygons.

Sample rasterizes the micropolygon, interpolates the grid colors,
and writes the result to the output buffer.

In the recent years the Graphics Processing Unit (GPU) has been
developed from a fixed function pipeline chip to a massively paral-
lel general purpose processor. With languages like NVIDIA CUDA
it is now possible to run arbitrary algorithms on the GPU. Reyes
was designed as a parallel algorithm from the beginning. However
the recursive Bound and Split loop makes it difficult to implement it
efficiently using the traditional approach of one kernel per pipeline
stage. Thus, we use a queue-based Megakernel approach to solve
this problem.

Based on this first implementation, we investigate displacement
mapping in the context of GPU Reyes. Displacement mapping is
a common technique to add details to a scene without adding ad-
ditional geometry. This displacement can take place in the Dice
stage. Then, we compare different micropolygon sampling algo-
rithms, nearest neighbor sampling for each micropolygon and a
proper rasterization method using the bounding box (BB) of each
micropolygon.

As a final point, we add Depth of Field (DoF) and Motion Blur
(MB), which are two important techniques to add realism to ren-
dered scenes. Due to an exposure time > 0 physical cameras depict
fast moving objects blurry. Virtual cameras however always have an
exposure time of 0. To simulate motion blur, samples from differ-
ent discrete times are considered. Similarly, due to an aperture > 0
physical cameras depict objects out of focus blurry. Virtual cam-
eras have an aperture of 0. To simulate DoF, samples on a virtual
camera lens are considered.

The remainder of this paper is structured as follows: The following
section discusses related work. In section 2 we present our im-
plementation of Reyes. In section 3 we describe the algorithms

used for displacement mapping, micropolygon rasterization, depth
of field and motion blur. In section 4 we present results and com-
pare the different depth of field and motion blur algorithms, fol-
lowed by the conclusion.

1 Related Work

Reyes In 1987 Cook et al. [Cook et al. 1987] introduced the
Reyes image rendering architecture, designed for photo-realistic re-
sults. It is based on the idea of adaptive surface subdivision. The
algorithm was designed to be run in parallel. In combination with
the introduction of general purpose computation on the graphics
card this gave rise to several GPU based Reyes implementations.

In 2008 Patney and Owens [Patney and Owens 2008] were the first
to move the complete bound/split loop to the GPU. Their imple-
mentation uses a breadth-first approach. Three kernel launches are
needed for each level of the split tree. These introduce overhead due
to CPU - GPU communication. The dicing and shading stage were
also computed on the GPU. Micropolygon rendering was done by
OpenGL.

The first algorithm that implemented the complete Reyes pipeline
within a general purpose GPU environment was RenderAnts [Zhou
et al. 2009]. They introduced additional scheduler stages for dicing,
shading and sampling. RenderAnts supports Renderman scenes and
is capable of executing Renderman shaders. Advanced effects such
as depth of field, motion blur and shadow mapping are also sup-
ported.

In 2009 Aila et. al. [Aila and Laine 2009] showed that a persis-
tent kernel using a queue can perform significantly faster than the
traditional approach of one thread per work item. In 2010 Tzeng
et al. [Tzeng et al. 2010] used this approach to implement the first
GPU Reyes pipeline that uses a persistent Megakernel for the bound
and split loop. The rest of the pipeline is split into four different
kernels. Their implementation uses distributed queuing with task
donation for work distribution. They were the first to achieve inter-
active frame rates on a single GPU.

Nießner et al. [Nießner et al. 2012] presented a method for fast
subdivision surface rendering for the DirectX pipeline. They use
compute shaders and the hardware tessellation unit for subdivision.
While they achieve high performance, their approach is still an ap-
proximation to the limit surface using the hardware tessellation unit.
Nießner et al. [Nießner and Loop 2013] extended this approach
with displacement mapping. They use a tile based texture format
with an overlap to eliminate cracks, and mip-mapping to eliminate
undersampling artifacts.

Steinberger et al. [Steinberger et al. 2014] introduced Whippletree,
an approach to schedule dynamic, irregular workloads on the GPU.
This approach is well suited for the irregular bound and split loop of
the Reyes pipeline. They also present an implementation of Reyes,
which is the basis of the application in this paper.

Motion Blur and Depth of Field Real-time DoF and MB al-
gorithms often use a screen-space approximation. While producing
overall good results, they can produce visible artifacts along sharp
depth discontinuities [Fernando 2004].

The OpenGL accumulation buffer can be used to simulate DoF and
MB [Haeberli and Akeley 1990]. For this method multiple render-
ing passes using the same scene and different points in time and
positions on the camera lens are needed. They are then added to

each other using the accumulation buffer. This approach has the
overhead of multiple complete rendering passes of the entire scene.

Fatahalian et al. [Fatahalian et al. 2009] showed that for microp-
olygons rasterization an algorithm using all the pixels in the bound-
ing box is superior to common polygon rasterizers. Fatahalian et
al. [Fatahalian et al. 2009] also introduced a DoF and MB algo-
rithm designed for micropolygon rendering. The algorithm divides
the screen into small tiles and assigns different samples to each
pixel inside a tile. It trades memory consumption and ghost images
with noise in the output image. This algorithm eliminates the need
for multiple render passes introduced by the accumulation buffer
method. Therefore, the overhead of multiple perspective transfor-
mations and shading computations for each polygon is eliminated.
In 2010 Brunhaver et al. [Brunhaver et al. 2010] presented a hard-
ware implementation of this algorithm. They show, that an efficient
implementation of motion blur and defocus is possible.

Munkberg et al. [Munkberg et al. 2011] introduced a hierarchi-
cal stochastic motion blur algorithm. The algorithm traverses the
bounding box of a moving triangle in a hierarchical order. The
screen is divided into tiles and before sampling a tile, the tempo-
ral bounds are computed to minimize the number of sample tests.
They use different sample positions and sample time for each pixel.
These sample positions are computed on the fly.

2 Simple GPU Reyes

We implemented a first GPU Reyes pipeline using CUDA and
Whippletree [Steinberger et al. 2014], similar to the implementation
described by Steinberger et al. [Steinberger et al. 2014]. Whip-
pletree uses a persistent Megakernel approach. The stages of the
algorithms are implemented as C++ classes and called procedures.
A procedure can spawn the execution of another procedure by in-
serting it into a queue. When a procedure finishes execution, a new
work item is pulled from a queue.

For the following description we assume cubic Bezier patches as
input geometry. Note that we also support subdivision surfaces.
However, the subdivision algorithms are a bit more complicated.
Thus, we focus on the easier to explain Bezier patch algorithm.

The stages of the Reyes pipeline are implemented as procedures.
One procedure computes the first bound stage of the pipeline. The
patches are then passed to a combined Split and Bound procedure.
When ready for dicing, the patches are passed to a combined dice
and shade procedure. The output is written to GPU memory, which
is then displayed and if necessary downsampled via OpenGL. The
procedures are described in the following paragraphs.

Bound is executed for every input patch of the model. This pro-
cedure clips a patch, if it is completely outside the view frustum. It
also decides, if a patch needs to be split. If the size of the screen
space BB is below a certain threshold in x and y direction, the patch
is forwarded to dicing. If not, the patch is forwarded to the SplitU or
SplitV procedure. This procedure uses 16 threads per input patch.
Each thread is responsible for one control point.

Split U/V and Bound are actually two separate procedures.
One for the split in U direction and one for the split in V direction
to reduce thread divergence. Here, the patch is split in halves using
the DeCasteljau algorithm. Then, the same checks as in the Bound
procedure are executed for each of the two new patches. They are
then either clipped, forwarded to dicing, or forwarded to Split U/V.
This procedure uses 4 threads per input patch. Each thread is re-
sponsible for one row/column of control points.

Figure 2: Using the approximative micropolygon normals for dis-
placement mapping can result in holes between micropolygons. In
this 2D example, red lines depict one micropolygons and the green
lines the other. The approximations lead to different normals at the
corner points and thus to holes after displacement mapping.

Dice and Shade first divides the input patch into 15× 15 mi-
cropolygons, then the resulting 16×16 points are shaded. The mi-
cropolygons are then rasterized and the interpolated color is written
to the output. This procedure uses 16×16 = 256 threads per patch.
The rasterization uses one thread per micropolygon. The 16× 16
corner points are computed with the DeCasteljau algorithm. First,
16 cubic Bezier curves are computed from the 4×4 control points,
using one thread per curve control point. Then these 16 curves are
subdivided into 16 points along each curve using one thread per
corner point.

3 Advanced Effects for GPU Reyes

Based on the simple GPU Reyes implementation, we present differ-
ent approaches to realize advanced rendering effects. We start with
displacement mapping, before dealing with more advanced effects
like real-time MB and DoF.

3.1 Displacement Mapping

In order to capture small details using Bezier patches only, a high
number of patches would be needed. This has a large impact on
performance and memory requirements, and it essentially renders
surface subdivision useless due to the initially high patch count. An
alternative to provide details in surface modeling is displacement
mapping. A texture is projected onto the model. Each texel con-
tains information on how much the surface should to be displaced.
The displacement happens along the normal of the surface. Positive
and negative displacements are possible. In Reyes, displacement
mapping is applied after the dicing step: Each point of the grid is
displaced before the micropolygons are shaded and rasterized. In
order to apply displacement mapping, texture coordinates through-
out the entire surface are needed. Every corner point of a patch
needs a texture coordinate. When a patch is split, texture coordi-
nates need to be assigned to the two new patches.

3.1.1 Normal Computation

Precise normal computation is important for displacement map-
ping, especially along common edges of patches after splitting.
When normals are approximated, using neighboring points on the
micropolygon grid, displacement mapping leads to holes as seen in
Figure 2. The normal must be computed directly from the paramet-
ric surface instead. The normal of a surface at a specific point is
equal to the normal of the tangent plane at the same point. Further-
more, the normal of the tangent plane can be computed by the cross
product of two vectors on the tangent plane. We use the tangent in v
direction and the tangent in u direction. To compute the tangent in

u direction at a specific point (ut ,vt), we first have to compute a cu-
bic Bezier curve that contains this point and runs in u direction.The
same is true for the v direction. A cubic Bezier patch is defined
by 16 control points, which can be seen as 4 cubic Bezier curves
in u and in v direction. A Bezier curve that runs through the point
(ut ,vt) in u direction is computed as follows. The DeCasteljau al-
gorithm is used on all four curves in v direction to get the curve at
vt . The four new points define the needed curve in u direction. The
tangent of the curve at coordinate ut can then be computed using
the DeCasteljau algorithm of a quadratic bezier curve [Shene 2011]
:

tangent(ut) = deCast(P2−P1,P3−P2,P4−P3,ut) (1)

P1 to P4 are the control points of the curve at v = vt . The same
algorithm is used for the v tangent. From the two tangents, the
normal is computed using the cross product.

The normal is computed for every grid point in the micropolygon
grid. All needed Bezier curves in u direction are already computed
in the dicing process. The curves in v direction are computed the
same way and are also stored in shared memory. For this stage
4× 16 = 64 threads are used. After this step one thread per grid
point computes the tangents and subsequently the normal for the
corresponding (u,v) coordinates using equation 1. After the dis-
placement, the normals are approximated using neighboring points
in the displaced micropolygon grid.

3.2 Micropolygon Rasterization

The dicing stage produces micropolygons that are approximately
one subpixel in size. Therefore, a simple nearest neighbor filling
produces acceptable results. For this approach only the pixel cen-
ter, which is nearest to the middle point of a micropolygon is con-
sidered. If this pixel center lies inside the micropolygon and the
Z-test passes, the shaded color of the micropolygon is written to
the output. This is also one of the algorithms we implemented.
The results were acceptable for simple patch rendering. But even
there a reduction of the micropolygon size is needed to ensure that
all pixels are shaded. When displacement mapping is enabled, the
simple algorithm fails to produce acceptable results.To consider all
pixels that are covered by a given micropolygon, we implemented
a proper rasterization algorithm:

Compute the BB of the micropolygon

For each pixel center inside the BB

If pixel center is inside the micropolygon

If Z-test passes

Write color and depth to output

This algorithm checks all pixel centers inside the bounding box
(BB) of the micropolygon. The BB was chosen because it covers
all pixels, and the ratio of samples inside the polygon versus sam-
ples outside the polygon is smaller than with stamp based methods,
as shown by Fatahalian et al [Fatahalian et al. 2009]. The inside
test divides the micropolygon into two triangles, and checks if the
sample is inside one of them.

The rasterization is performed for all micropolygons of a diced grid
in parallel. Parallel execution of the rasterization loop is not advis-
able, since the size of a typical micropolygon bounding box is only
one pixel.

3.3 Motion Blur and Depth of Field

Motion Blur (MB) and Depth of Field (DoF) are two methods that
add realism to a scene. First, we describe each method, then we
investigate three algorithms to produce Motion Blur and DoF.

Figure 3: Extended bounding box of a square micropolygon. The
red circles depict the circle of confusion. The red arrows depict the
motion vectors of the corner points. The size of the bounding box
increases dramatically, even for small motion vectors.

Motion Blur To simulate motion blur, samples from different
discrete times are computed. This implementation uses a linear in-
terpolation along a two dimensional motion vector. Each grid point
is displaced independently. The vector is computed by transform-
ing the points with a model-view-projection matrix from some time
in the past. Samples are taken along this motion vectors.

Depth of Field To simulate depth of field, samples on a virtual
camera lens are considered. This results in an circle of confusion
(CoC) around a computed point. The diameter of the CoC depends
on the distance from the camera, the aperture and the plane in focus.
The diameter is computed for each point in the diced micropolygon
grid. Each point is displaced by a sample vector multiplied by the
radius of the CoC. A sample vector corresponds to a position on the
lens. Sample vectors are chosen inside a circle with a diameter of 1
pixel.

We investigate three algorithms which produce these effects. In
each algorithm the samples are stored as subpixels in the output
image. These subpixels are later averaged. Each of the algorithms
supports both motion blur and depth of field. If only one of the
methods is activated, the circle of confusion or the motion vector is
set to zero. The combination of the motion vector and the x and y
position on the lens forms a 3D sample. The 3D sample positions
are randomly selected, when one of the algorithms is activated.

Simple UVT Sampling is the simplest and fastest of the three
algorithms. It however produces ghost images of the object if too
few samples are chosen. The algorithm is similar to the accumu-
lation buffer method [Haeberli and Akeley 1990]. Instead of an
accumulation over multiple passes, the rasterization of a microp-
olygon is repeated multiple times. Each time a different 3D sample
is used. The corner points of the polygon are moved according to
the motion vector and the position on the CoC. Then, rasterization
is performed.

Compute CoC and Motion Vector

i = 0

For each UVT sample

for each corner point

Add motion vector and position on CoC

Rasterize micropolygon (Use subpixel i)

i++

Interleave UVT (IL) is a more complicated and slower version
of the simple sampling algorithm. It produces no ghost image, but
noise instead. More samples are considered, but not every sample
is present in every pixel.

Figure 4: Rendering of the Killeroo and the Teapot model. The
left image shows the patches before dicing and the right one shows
the final rendering. The Killeroo model requires less subdivision,
because it has a high initial patch count. In the teapot image a higher
subdivision of patches that appear larger in the output image can be
seen.

As in the simple method, the rasterization step is repeated for every
3D sample. The number of samples, and the rasterization itself is
modified by the introduction of tiles. The screen is divided into tiles
of size K squared, K > 1. Each tile has N unique UVT samples.
Resulting in M = N

K×K samples per pixel. Each sample is assigned
to a specific subpixel of a pixel in a tile. The BB is computed over
the tiles of the output image. In each rasterization step, only the
currently active sample is considered for inside testing. The sample
position is given by the position inside the tile [Fatahalian et al.
2009].

Compute CoC and Motion Vector

For each UVT sample

for each corner point

Add motion vector and position on CoC

Compute tile BB

For each tile in BB

If sample position is inside micropolygon

If Z-test passes

Write color and depth to output

Interleave UVT introduces a pattern noise with a period equal to
the tile size. This pattern can be reduced by the permutation of the
samples across the tiles in the output image. For this approach, P
sample permutations are precomputed. The permutation for each
tile is chosen as follows:

tilenumber = tiley ·
scenewidth

gridsize
+ tilex, (2)

perm = tilenumber+ tilex + tiley mod P. (3)

This formula was chosen over the tilenumber because common ren-
dering resolutions have multiples of used tile sizes as the number of
pixels per row. This would lead to the same permutation in every
screen column and therefore a visible pattern.

The performance is similar to the simple algorithm using the same
number of samples (e.g. 2× 2 tiles · 16 = 64 samples). This is be-
cause the bounding box of a typical micropolygon that only covers
one pixel also covers one tile. Thus, the size of the bounding box
and therefore the number of samples considered is approximately
the same. The memory consumption however is much smaller.

There is however a small overhead for the computation of the tiles
and the sample permutation.

Bounding Box Algorithm assigns different UVT samples to
different output pixels. Unlike the other two, this algorithm does
not rasterize the micropolygon for each 3D sample. It expands the
BB of the micropolygon so that all possible positions in time and
on the lens are considered in one rasterization step. Thus, it also
assigns different 3D samples to different output pixels. It is neces-
sary that every pixel has the same 3D samples for every rasterized
patch. Otherwise, the Z-test for a specific subpixel might compare
two patches from a different time or a different lens position. In
order to assign different 3D samples to different pixels, we use a
texture that contains the samples for every pixels. To reduce mem-
ory consumption, we repeat a 64×64 texture over the entire output
image.

The algorithm performs a lookup for every pixel that might be cov-
ered by the micropolygon. The BB is extended by the maximal
motion vector and the CoC around every corner point as seen in
Figure 3. For every pixel in this bounding box, every UVT sam-
ple is considered. The micropolygon is moved according to the T
sample. The sample point is moved along the negative UV sample
direction. Then it is checked, if the sample position lies inside the
moved micropolygon.

Compute extended BB

for each pixel P in the BB

for each sample per pixel

Lookup UVT sample for pixel and sample

Move P in negative UV direction

for each corner point

Add motion vector

If P is inside micropolygon

If Z-test passes

Write color and depth to output

The performance of this algorithm is heavily influenced by the size
of the extended BB. Fast moving objects and out of focus objects
will reduce performance.

4 Results

In this section we discuss the results achieved by the described al-
gorithms. All tests were run using a machine with a AMD Athlon
X2 270 CPU and a GeForce GTX680 graphics card. The program
was compiled on Windows 7 using CUDA 6.0. To evaluate the
tested algorithms in isolation, we test simple objects with a single
colored background only. As test scenes we use the Utah Teapot
(32 patches) and the Killeroo (11532 patches). In Figure 4 example
renderings of the Killeroo and the Teapot model are shown.

4.1 Displacement mapping

In Figure 5 the effect of displacement mapping on the Killeroo
model is shown. The performance cost of the displacement map-
ping is between 5% and 8%. For this small difference a lot of small
details are added to the scene. Without displacement mapping ad-
ditional geometry would be needed to show the same small details
which would impact performance more significantly. Displacement
mapping needs precise normals. Otherwise, holes appear as can be
seen in Figure 6. The precise normal computation adds another 5-
8% to the rendering time. This results in a overall performance loss
of about 10-15% for displacement mapping.

Figure 5: Displacement mapping (right) adds detail.

(a) Approximated normals (b) Computed normals

Figure 6: Comparison of normal computation for displacement
mapping. Approximate normals produce holes.

Figure 7: Comparison of the micropolygon rasterization methods.
The naive method (left) produces holes. Rasterization of the mi-
cropolygons (right) eliminates them.

Figure 8: The upper image shows the full rendering, that was used
in the MB comparison without motion blur. The lower image shows
the same scene with MB enabled. The simple algorithm with 225
samples per pixels was used.

(a) S. 16 (b) S. 64 (c) S. 225 (d) BB 16 (e) BB 25 (f) BB 64

Figure 9: Comparison of the simple motion blur algorithm (S.) and
the BB algorithm for motion blur. The numbers denote the number
of samples for each pixel.

4.2 Micropolygon rasterization

The naive implementation uses one sample per micropolygon. This
approach produces holes. Especially, when displacement mapping
is enabled as seen in Figure 7(a). This happens, because the dis-
placement of the grid points in the dicing stage produces deformed
micropolygons that cover more than one pixel. As it can be seen
in Figure 7, rasterization eliminates the holes that occur through
displacement mapping. The remaining holes are caused by small
errors introduced in the Killeroo model during conversion.

The performance impact of the rasterization algorithm depends on
the amount of rasterization done compared to the rest of the algo-
rithm. The Killeroo model has a high initial number of patches.
This means that little patch splitting is needed and that the patch
count is high even when the screen size of the model is small. The
performance costs for proper rasterization for this model are be-
tween 8.5% for small renderings and 16% when the model fills the
whole screen. The teapot model, on the other hand, has a low ini-
tial patch count. This means that the amount of rasterization is more
dependent on the screen space size of the model. The rasterization
performance costs for this model are between 2% for small render-
ings of the model and 20% when the model fills the whole screen.

4.3 Motion Blur

In this section we compare the different motion blur algorithms with
different parameters and against each other. For this comparison
the Killeroo model was used while it spins around the z-axis and is
viewed from above. For the visual comparison, only the tail of the
model is shown. The renderings and performance measurements
were performed showing the whole model as seen in Figure 8.

Simple In Figure 9 three examples of the simple motion blur al-
gorithm are shown. In the first image ghost images of the tail can
be seen. They start to disappear with a higher number of samples,
but are still visible at the end of the tail using 64 samples per pixel.
This high number of samples decreases the performance of the ap-
plication, e.g., by a factor of 3.5 between 16 and 64 samples.

Bounding Box In Figure 9 three examples of the BB algorithm
are shown on the right side of the page. They show the algorithm
with different numbers of samples per pixel. The examples show
no ghost images. There is, however, a very noticeable noise.

(a) 2x2 (b) 2x2 p (c) 3x3 (d) 3x3 p (e) 4x4 (f) 4x4 p

Figure 10: Comparison of the IL algorithm with different parame-
ters. The numbers denote the tile size. p indicates, that 64 permu-
ations of the samples were used. The number of samples is 16 for
all examples.

Samples Simple BB IL 2x2 IL 3x3 IL 4x4

16 0.046 0.125 0.14 0.28 0.46
25 0.072 0.19 0.22 0.43
64 0.16 0.49
225 0.52

Table 1: Rendering time in s for the different MB algorithms using
the Killeroo scene and a 800×600 viewport.

Interleave UVT In Figure 10 six examples of the Interleave
UVT algorithm for motion blur are shown. Three different tile
sizes were used. For each tile size an image with 1 and one with
64 permutations of the sample positions in the tiles was rendered.
The algorithm without sample permutations shows a clear pattern
with the same size as the tiles. The introduction of permutations
increases the quality of the visual output significantly as seen in
Figure 10.The difference in tile size is much more visible without
permutations, but for a 2x2 tile size, even the permutated samples
produce some pattern. This pattern disappears with larger tile sizes.

Comparison Visually, the IL and the BB algorithms produce
similar results, when a large enough tile size and a permutated sam-
pling pattern is used for the IL algorithm. They both produce ran-
dom noise, opposed to the ghost images seen from the simple algo-
rithm.

In Table 1 the performance of the different algorithms with differ-
ent settings is shown. The render time for the same scene without
any motion is 0.0067s. There is a factor of about 7 between dis-
abled motion blur and the simple algorithm with only 16 samples.
This means that the execution time is dominated by the rasteriza-
tion stage when MB is enabled. The performance of the simple
algorithm is similar to the performance of the IL algorithm with the
same number of samples. For example, the performance of the sim-
ple algorithm with 64 samples is similar to the IL algorithm with a
tile size of 2x2 and 16 samples. The computation time of the simple
and the IL algorithm roughly scales with the number of samples.

For this example, the BB algorithm is much faster than the IL al-
gorithm. The performance of the BB algorithm with 64 samples is
approximately the same as the IL algorithm with 16 samples and a
tile size of 4. However, this does not mean that BB is always faster
than the IL algorithm. The performance is heavily influenced by
the size of the extended bounding box. This means that for a larger
motion blur BB will perform worse, whereas the runtime of the IL
algorithm will stay the same.

(a) No DoF (b) Simple 16 (c) Simple 225

(d) IL 2x2 16 (e) BB 16 (f) BB 25

Figure 11: Comparison of the DoF algorithm outputs. The number
denotes the number of samples per pixel, and the tile size for the IL
algorithm.

#Samples Simple BB IL 2x2 IL 3x3 IL 4x4

16 0.039 0.63 0.20 0.39 0.63
25 0.097 0.98 0.31 0.61 0.93
36 0.14 1.4 0.41
225 0.79

Table 2: Rendering time in s for the different DoF algorithms using
the Killeroo scene and a 800×600 viewport.

4.4 Depth of Field

For DoF the same algorithms as for MB were used. The advantages
and disadvantages of the algorithms are basically the same as with
MB. Thus, we do not go into the details of the algorithms.Figure 11
shows the different algorithms, while Table 2 presents the perfor-
mance measurements with different settings. The render time for
the same scene without any motion is 0.014s.

4.5 Combined Depth of Field + Motion Blur

Figure 12 shows renderings of the Killeroo model with combined
DoF and MB. The advantages of the algorithms are the same as for
the single effects. The simple algorithm shows ghost images around
the blurred areas, whereas the other two algorithms produce noise
in the same areas.

5 Conclusion

We have shown a realtime capable implementation of the Reyes al-
gorithm on the GPU. The implementation uses a persistent Megak-
ernel and queues. It can produce advanced effects, such as displace-
ment mapping, motion blur and depth of field.

We have compared a naive nearest neighbor sampling algorithm

(a) None (b) Simple 16

(c) IL 2x2 16 (d) BB 16

Figure 12: Comparison of the combined DoF and MB algorithms.
The number denotes the number of samples per pixel, and the tile
size for the IL algorithm. The plane of focus is at the head of the
model, and it rotates around its z-axis.

with a proper micropolygon rasterization approach. This algorithm
considers all pixels inside the BB of a micropolygon. The impact
on rendering performance for this algorithm is relatively low and
it eliminates the holes created by the naive implementation. We
investigated displacement mapping for Reyes. This is a method that
adds small details to the scene without introducing new geometry.
To get good results for displacement mapping, we have shown that
a precise normal computation is crucial. Overall the performance
impact of displacement mapping on Reyes is relatively small.

Furthermore, we have shown the differences between three MB and
DoF algorithms. The simple algorithm needs high sample rates to
counter the problem of ghost images. The IL and the BB algorithm
eliminate this problem, but introduce noise.Using a large enough
tile size IL and BB produce similar results with a random noise.
The performance of the BB algorithm heavily depends on the length
of the motion vectors and the size of the CoC. The performance of
IL and the simple algorithm, is not influenced by these parameters.
Therefore, the choice between the IL and BB algorithm depends on
the amount of blur produced during rendering. MB and DoF need
significant computational power, but for low sample numbers, the
implementation achieves interactive framerates.

In the future we would like to expand our implementation of Reyes
to support more complex scenes, e.g. through Renderman scenes
and the Renderman shading language. We would like to show
that an efficient rendering of photo realistic scenes within an au-
tonomously executing persistent Megakernel is possible.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on gpus. In Proc. High-Performance Graphics
2009, 145–149.

BRUNHAVER, J., FATAHALIAN, K., AND HANRAHAN, P. 2010.
Hardware implementation of micropolygon rasterization with
motion and defocus blur. Proceedings of the

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
reyes image rendering architecture. In ACM SIGGRAPH, 95–
102.

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. Data-parallel raster-
ization of micropolygons with defocus and motion blur. In High
Performance Graphics 2009, 59–68.

FERNANDO, R. 2004. GPU gems. Addision-Wesley.

GORDON, J. Binary tree bin packing algorithm.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
hardware support for high-quality rendering. ACM SIGGRAPH
24, 4, 309–318.

MUNKBERG, J., CLARBERG, P., AND HASSELGREN, J. 2011.
Hierarchical stochastic motion blur rasterization. In High Per-
formance Graphics, 107–118.

NIESSNER, M., AND LOOP, C. 2013. Analytic displacement map-
ping using hardware tessellation. ACM Transactions on Graph-
ics (TOG) 32, 3, 26–26.

NIESSNER, M., LOOP, C., MEYER, M., AND DEROSE, T. 2012.
Feature-adaptive gpu rendering of catmull-clark subdivision sur-
faces. ACM Transactions on Graphics (TOG) 31, 1, 6–6.

PATNEY, A., AND OWENS, J. D. 2008. Real-time reyes-style
adaptive surface subdivision. ACM Trans. Graph. 27, 5, 143–
143.

SHENE, C., 2011. Lecture notes for introduction to computing with
geometry at michigan technological university.

STEINBERGER, M., KAINZ, B., KERBL, B., HAUSWIESNER,
S., KENZEL, M., AND SCHMALSTIEG, D. 2012. Softshell:
dynamic scheduling on gpus. ACM Transactions on Graphics
(TOG) 31, 6-6, 161–161.

STEINBERGER, M., KENZEL, M., BOECHAT, P., KERBL, B.,
DOKTER, M., AND SCHMALSTIEG, D. 2014. Whippletree:
Task-based scheduling of dynamic workloads on the gpu. ACM
Trans. Graph. 33, 6-6 (Nov.), 228:1–228:11.

TZENG, S., PATNEY, A., AND OWENS, J. D. 2010. Task man-
agement for irregular-parallel workloads on the gpu. In High
Performance Graphics, 29–37.

ZHOU, K., HOU, Q., REN, Z., GONG, M., SUN, X., AND GUO,
B. 2009. Renderants: Interactive reyes rendering on gpus. In
ACM SIGGRAPH Asia, 155:1–155:11.

