
Real-time Rendering of Procedural Planets at Arbitrary Altitudes

FLORIAN MICHELIC and MICHAEL KENZEL, Graz University of Technology, Austria
KARL HAUBENWALLNER, VRVis Research Center, Austria
BERNHARD KERBL and MARKUS STEINBERGER, Graz University of Technology, Austria

(a) Full view of planet, 142 fps (b) Close-up of planet atmosphere, 138 fps (c) Atmospheric effects as seen from surface, 170 fps

Fig. 1. Our holistic method for rendering realistic planets in real-time includes procedurally generated terrain, ocean waves, and clouds in combination with
atmospheric scattering. The produced visuals are consistent across arbitrary changes in camera position and proximity: (a) Planet viewed from space, casting a
shadow on the surrounding clouds and vice versa; (b) planet viewed from slightly above the atmosphere, with mountaintops reaching out of the haze; (c)
multiple snapshots close to the surface during a sunset. Note the clearly visible light shafts. All scenes were rendered and timed using an Nvidia GTX 1080 Ti.

Focusing on real-time, high-fidelity rendering, we present a novel approach
for combined consideration of four major phenomena that define the visual
representation of entire planets: We present a simple and fast solution for a
distortion-free generation of 3D planetary terrain, spherical ocean waves and
efficient rendering of volumetric clouds along with atmospheric scattering.
Our approach to terrain and ocean mesh generation relies on a projected,
persistent grid that can instantaneously and smoothly adapt to fast-changing
viewpoints. For generating planetary ocean surfaces, we present a wave
function that creates seamless, evenly spaced waves across the entire planet
without causing unsightly artifacts. We further show how to render volu-
metric clouds in combination with precomputed atmospheric scattering and
account for their contribution to light transport above ground. Our method
provides mathematically consistent approximations of cloud-atmosphere in-
teractions and works for any view point and direction, ensuring continuous
transitions in appearance as the viewer moves from ground to space. Among
others, our approach supports cloud shadows, light shafts, ocean reflections,
and earth shadows on the clouds. The sum of these effects can be visualized
at more than 120 frames per second on current graphics processing units.

CCS Concepts: •Human-centered computing→Geographic visualiza-
tion; • Computing methodologies→ Rendering; Mesh geometry models.

Additional Key Words and Phrases: Real-Time, Rendering, Planet, Terrain,
Oceans, Atmosphere, Clouds

Authors’ addresses: Florian Michelic; Michael Kenzel, Graz University of Technology,
Institute of Computer Graphics and Vision, Graz, 8010, Austria; Karl Haubenwallner,
VRVis Research Center, Institute of Computer Graphics and Vision, Vienna, 1220,
Austria; Bernhard Kerbl; Markus Steinberger, Graz University of Technology, Institute
of Computer Graphics and Vision, Graz, 8010, Austria.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
0730-0301/2019/0-ART0
https://doi.org/0000001.0000001_2

1 INTRODUCTION
Today, real-time graphics applications for visual entertainment, such
as recent installments of the Battlefield or Grand Theft Auto series,
often feature explorable landscapes that span multiple kilometers
in size. Games like No Man’s Sky or Star Citizen take it another
step further and let players delve into an entire virtual universe,
consisting of a seemingly infinite number of individual planets.
Rendering at the planetary scale brings with it many issues to

overcome. Fully detailed terrain data can no longer be held in mem-
ory in its entirety and simply rendering the terrain geometry as a
whole is not an option. While out-of-core solutions exist [Cignoni
et al. 2003], they do not handle fast camera transitions well. Local-
ized approaches commonly apply clipmaps to planetary terrain and
sample the height field with decreasing granularity as the distance
from the viewer grows [Clasen and Hege 2006; Dimitrijević and
Rančić 2015]. However, these approaches require a restrictively high
grid resolution to avoid terrain morphing and aliasing artifacts dur-
ing camera movement. We propose a new method for rendering the
terrain of a spherical planet that minimizes morphing artifacts even
with a low number of grid points and show how the same method
can be used to render large bodies of water, such as oceans.

Another essential factor for the realistic appearance of a planetary
environment is its atmosphere. Approaches like that of Bruneton
and Neyret [2008] can render realistic skies very fast. However,
these methods are usually based on a clear sky model and ignore
overcast or cloudy scenarios. We extend the method by Bruneton
and Neyret to incorporate clouds for realistic atmospheric lighting.

2 TERRAIN AND OCEAN RENDERING
To render our terrain, we first create a coarse persistent grid on
the xy plane centered at the planet’s center, with coordinates in
the range [−1, 1], warp it to resemble a hemisphere and translate it

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/0000001.0000001_2

0:2 • Michelic et al.

Fig. 2. Projection of the warped grid to the surface as the offset zs decreases.

along the z-axis by a global offset zs . We then rotate the grid to face
the camera, project it to the ground level of the planet and displace
the projected grid vertices to the corresponding elevation in the
height field. The offset parameter zs can be used to control what
portion of the planet’s surface the grid should cover (see Figure 2).
For terrains with a high variance in elevation data, we can compute
an adequate zs that generates vertices even beyond the horizon to
ensure the consistent visibility of hills and mountaintops rising up
in the distance. To achieve this, we calculate zs according to

zs =
R2 + d2 − (h + s)2

2r · (h + s)
where r is the radius of the planet’s ground level, R is the distance
from the planet center to the highest elevation, d is the distance
from the planet center to the camera position, h =

√
d2 − r2 and

s =
√
R2 − r2. During rendering, we perform view frustum culling

and tessellation of the grid based on the screen size of the grid cells.
Naïvely generating a new grid centered at the current camera

position in each frame would result in unsightly morphing arti-
facts [Clasen and Hege 2006]. To alleviate this issue, we maintain
a proxy position ps close to the camera for which we compute the
grid. ps is snapped to select locations such that new sample points
coincide with as many sample points of previous frames as possible.
To render a planet’s oceans, we can use the same method as for

the terrain and project a grid onto the water surface level. However,
instead of sampling a height field, we calculate the displacement p′
of a grid vertex p at animation time t using the Gerstner wave func-
tions with p′ = Gerstner(p, t,w), where w = {di ,Ai ,ωi ,φi ,Qi }

are artistic parameters, as defined by [Finch 2004]. However, since
this approach assumes a planar surface and causes artifacts when
applied directly to a sphere, we introduce spherical Gerstner wave
functions as an extension: We first select a wave origin for each
layered wave function on the planet’s surface and define the unit
vector oi as pointing from the center of the planet towards that
wave origin. We then calculate the distance li from the vertex p to
the wave origin along the surface. The wave direction di lies on the
tangent plane at p and points in the direction opposite of the wave
origin. With v = p

| |p | | , the equations for di and li at position p are:

di = v × ((v − oi) × v) li = arcsin
(
∥v − oi ∥

2

)
2r

3 ATMOSPHERE RENDERING
The sky’s appearance is typically affected by three major contribu-
tions: the sun, the planet’s atmosphere, and clouds. To efficiently
include these factors as part of the rendering equation, Bruneton
and Neyret [2008] introduced a precomputation schema that al-
lows calculation of the transmittance TA(p1, p2) and in-scattering

planet

cloud layer

top atmosphere

bottom atmosphere

Fig. 3. Overview of our combined atmosphere and clouds ray marching
approach. We split the atmosphere into three distinct regions and perform
adaptive ray marching, with separate sample positions for the transmittance
and in-scattering values for clouds (orange) and the atmosphere (blue).

SA(p1, p2) of the atmosphere between any two points, provided the
atmosphere is constant across the entire planet. We extend their
method by introducing dynamic clouds, modeled as density values
in 3D textures and rendered by performing adaptive ray-marching.
We first divide the atmosphere into three concentric layers: an upper
layer, containing only the atmospheric effects above the clouds, a
cloud layer where atmosphere and clouds interact, and a lower layer,
containing again only atmospheric effects. We then shoot rays from
the camera position in the current viewing direction. Rays traverse
through the individual layers and terminate once they reach either
the planet surface or outer space. We compute TA and SA for the
upper and lower layer once between their entry and exit points.
Within the cloud layer, we perform ray-marching and assume lin-
ear changes in SA between any two points. For the contribution of
clouds, we use a smaller step size to sample their local density and
combine their influence on transmittance and in-scattering with the
interpolated SA and appliedTA from the atmosphere (see Figure 3).

4 CONCLUSION
We have presented a method that allows for terrain, ocean and
unified cloud-atmosphere rendering in real time for a system that
ensures consistency and continuity for transitions from ground
to space. The combination of these techniques yields a feasible
and holistic approach for the rendering of entire virtual worlds. Of
course, apart from terrain, ocean and sky, it takes more details to
render a realistic planet, such as fauna, flora, roads and cities to
name just a few. However, the procedural generation or integration
of these things is a different challenge. Nevertheless, since we are
able to render highly challenging images with many cloud samples,
light shafts and complex cloud shadows at more than 120 fps, our
solution leaves sufficient room for potential future extensions.

REFERENCES
Eric Bruneton and Fabrice Neyret. 2008. Precomputed Atmospheric Scattering. In

Proceedings of the Nineteenth Eurographics Conference on Rendering. 1079–1086.
P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. 2003.

Planet-sized batched dynamic adaptive meshes (P-BDAM). In IEEE Visualization,
2003. VIS 2003. 147–154. https://doi.org/10.1109/VISUAL.2003.1250366

Malte Clasen and Hans-Christian Hege. 2006. Terrain Rendering Using Spherical
Clipmaps. In Proceedings of the Eighth Joint Eurographics / IEEE VGTC Conference on
Visualization. 91–98.

Aleksandar M. Dimitrijević and Dejan D. Rančić. 2015. Ellipsoidal Clipmaps – A
planet-sized terrain rendering algorithm. Computers & Graphics (2015), 43–61.

Mark Finch. 2004. Chapter 1. Effective Water Simulation from Physical Models. In GPU
Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics, Randima
Fernando (Ed.). Pearson Higher Education, 5–29.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/10.1109/VISUAL.2003.1250366

	Abstract
	1 Introduction
	2 Terrain and Ocean Rendering
	3 Atmosphere Rendering
	4 Conclusion
	References

