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Abstract

Collaborative filtering collects similar patches, jointly filters them and scatters the output back to input patches; each pixel
gets a contribution from each patch that overlaps with it, allowing signal reconstruction from highly corrupted data. Exploiting
self-similarity, however, requires finding matching image patches, which is an expensive operation. We propose a GPU-friendly
approximated-nearest-neighbour(ANN) algorithm that produces high-quality results for any type of collaborative filter. We
evaluate our ANN search against state-of-the-art ANN algorithms in several application domains. Our method is orders of
magnitudes faster, yet provides similar or higher quality results than the previous work.

Keywords: approximated nearest neighborhood, parallel computing, non-local means, denoising

ACM CCS: 1.4.3 [Image Processing and Computer Vision]: Enhancement Filtering.

1. Introduction

Noise removal [BCMOS5, DFKEQ6] is an important problem in appli-
cation domains such as imaging, image synthesis and geometry re-
construction (Figure 1). A powerful approach to noise removal relies
on self-similarity in the data. Exploiting self-similarity requires find-
ing data points (pixels in 2D images, 3D points in surface scans) that
have locally similar patterns of neighbouring values. This matching
is often done by considering an image patch, which provides suf-
ficient context to enable robust matches. Overlapping patches also
facilitate collaborative filtering: if the image patches are, for exam-
ple, of size 8 x 8, each pixel is part of 64 different patches, and
if all those are filtered separately, each pixel receives 64 different
results. These 64 results can further be filtered or averaged to obtain
strongly denoised estimates. Similar patches could be found from
nearby regions in the same image, or in a time sequence, from dif-
ferent images. It is often desirable to find several matching patches
instead of finding just the single, best match. This problem can be
formulated so that the patch is interpreted as a high-dimensional
vector (e.g., 64D for 8 x 8 patches), and the k closest vectors are
found in a k-nearest-neighbour (kNN) search. Relaxing the problem
by requiring only approximate matches allows significant speed-ups
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at only a negligible cost on the denoising performance. This leads
to a class of algorithms called the approximate-nearest-neighbour
(ANN) algorithms.

Many techniques that accelerate ANN search have been proposed.
Examples include random KD-trees, K-means clustering, local sen-
sitive hashing and principal component analysis (PCA). While being
efficient, the majority of these solutions suffers from (i) the curse of
dimensionality, where high-dimensional data become very sparse
and the distance metric loses its discrimination power, (ii) limited
accuracy, reducing the quality of the matches and the filtering result,
(iii) high pre-processing cost, which prohibits the use in interactive
applications and (iv) poor performance scaling on massively parallel
systems, such as GPUs. Importantly, the search for the best matches
is completely separated from collaborative filtering, leading to in-
efficient implementations.

We present an ANN search method that is optimized for both
collaborative filtering and an efficient implementation on the GPU.
Whereas many other methods first construct a search structure
and then repeatedly use it to perform search and filtering, we in
essence perform all the queries in parallel as we construct the



Y.-T. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering 139

Collaborative

Filter

Figure 1: Collaborative filtering is a powerful, yet computationally demanding denoising approach. (a) Relying on self-similarity in the
input data, collaborative filtering requires the search for patches which are similar to a reference patch (red). Filtering the patches, either
by averaging the pixels or modifying the coefficients after a wavelet or other transformation, removes unwanted noise, and each output pixel
is collaboratively filtered using all the denoised image patches that overlap the pixel. Our method accelerates the process of searching for
similar patches and facilitates high-quality collaborative filtering even on mobile devices. Application examples for collaborative filtering
include (left: our output; right: noisy input) (b) denoising an image burst, (c) filtering the samples for global illumination and (d) geometry

reconstruction.

search structure. The method is general and can be used in different
denoising algorithms. We demonstrate the use of our method for
2D image denoising, both for a single image and an image burst.
Furthermore, we show how it can be used to filter the output of
ray-traced renderings, and to denoise surfaces recorded with 3D
range scanners. This paper is an extended version of a conference
paper [TSPP14], and this method was a key enabler for many
applications in the FlexISP work [HST*14].

2. Related Work

General high-dimensional filtering has become an important tech-
nique in recent years with many interesting applications [AGDL09,
GOI12]. In this work, we are mostly interested in collaborative fil-
tering [BCMOS5, DFKEQ6], which searches for similar candidates in
a high-dimensional space.

Zontak and Irani [ZI11] has shown that internal image statistics
tends to be more powerful than general external statistics for its
predictive power. The likelihood of similar candidates within the
same image also drops rapidly with the growth of spatial distance
from the patch and its gradient content, which is a powerful prior
that can improve the performance of existing collaborative filtering
algorithms. Furthermore, combining both internal and external im-
age priors [MZI13] can achieve better result than relying on single
prior along.

Regardless which strategy to use, the key enabler for collabora-
tive filtering is a fast nearest-neighbourhood (NN) search; therefore,
we focus the discussion here on various NN methods. The KD-tree
is the most widely used family of algorithms for accelerated NN
search [Ben75]. It is very effective for exact search when the data
dimensionality is low. For high-dimensional data, several approxi-
mations exist.

Randomized KD-trees have been used to look up image features in
very large-image recognition problems [PCI*07, SAHOS]. To avoid
excessive backtracking when searching for neighbouring elements,
dynamically built priority queues can be used [AM93, BL97]. Ran-
domized KD-trees address this issue by splitting the data among
multiple KD-trees generated from randomized overlapping subsets

of the data. The trees are smaller and can be searched concurrently,
with less backtracking. Pre-processing becomes more expensive, as
the data must first be analysed with PCA to align its moment axes
with the coordinate axes of the KD-tree.

There are other methods for mitigating the cost of backtrack-
ing. One approach utilizes spatial coherency to propagate matches
[OA12, HS12]. If the best candidates for a patch have already been
found, and a new search is done for a nearby patch, the good matches
found previously can be propagated to help the current search. That
is, the search just dives into the leaves without backtracking, and also
checks the buckets containing the candidates of the neighbour. The
bookkeeping of the previous matches adds some overhead, however.

Gaussian KD-trees [AGDLO09] sparsely represent distributions
in high-dimensional space. They support spatio-temporal filtering,
exploit the commonalities between non-local means, bilateral and
other related filters based on an assumption of Gaussian distribu-
tions, and can be implemented efficiently on the GPU. The key
difference to a regular KD-tree is that in addition to the splitting
value, it also stores the minimum and the maximum of the data
projected onto the cut axis. During search, this can be used to skip
branches that are likely to only have few samples. Such design ele-
gantly integrates filtering and NN search into a single data structure.
However, it also limits the types of supported filters, whereas our
method works with all filters that rely on NN search.

Clustering trees use a different choice for defining how the
tree should branch. Fukunaga and Narendra [FN75] proposed K-
means trees, where a tree structure is constructed via K-means,
recursively at each level clustering the data points into &k dis-
joint groups. The trees are constructed by hierarchical cluster-
ing [ML12], where the branching factor k& determines whether a
flat or deep tree is built. For clustering, a simple random selec-
tion of k points is used. To improve search performance, multiple
trees can be built in parallel. Nistér and Stewénius [NS06] pro-
posed to construct trees in the metric space. An advantage of using
K-means is its efficiency of clustering. However, the centroid can be
easily influenced by outliers. We use the Fast Library for Approx-
imate Nearest Neighbors (FLANN) implementation [ML] as our
benchmark k-means tree implementation. K-means trees can also
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be combined with KD-trees to boost search performance [MLO09].
This approach has successfully been adopted for noise reduction
[BKCO8], where Brox et al. perform a recursive k-means clustering
with k = 2 splits in each node. To increase precision, patches within
distance w of a decision boundary are assigned to both sets, which
increases the memory footprint and complicates data management.

Vantage point trees [ Yia93] split points using the absolute distance
from a single centre, instead of partitioning points on the basis of rel-
ative distance to multiple centres. The number and thickness of these
so-called ‘hypershells’ can also be chosen in various ways to im-
prove the performance in image processing applications [KZNOS].

Locality-sensitive hashing [GIM99] is an efficient method for NN
search on binary features. Zitnick [Zit10] proposed a similar method
using mini-hash for the same purpose. While a binary descriptor has
a small-memory footprint and the Hamming distance can be used
as an efficient metric, a fairly large support is required to have
enough discriminative power, which makes collaborative filtering
more costly.

To accelerate search, PatchMatch [BSFG09] uses a random NN
search where neighbouring patches propagate good matches. The
generalized PatchMatch [BSGF10] further improves this search
strategy to support KNN queries. Liu and Freeman [LF10] extended
the concept of random NN search further to video denoising while
achieving temporal smoothing result. To avoid brute force search,
PatchGP [CKYY13], an extension to pixel geodesic paths [BSO7],
only checks subsets of path directions. As the distance measure on
these subsets can be unreliable due to noise, PatchGP uses cus-
tomized multi-scale filters to achieve good denoising results.

Many GPU-accelerated nearest-neighbourhood techniques have
been proposed. For instance, redundant norm computations can
be minimized by exploiting an overlap between search windows
[XLYD11], or accelerated insertion sort [GDNB10]. However, the
running times are several times slower than with approximative
methods. Pan and Manocha proposed parallelized local sensitive
hashing [PM11] with RP-tree and cuckoo hashing. To reduce the
search space, the data can also be partitioned into a set of randomly
overlapping spheres [Cay10]. If the structure of the data is known,
such as 3D points, performance can be further improved [ZHWGO0S,
QMNO09, LSP*12, LTF*12]. Combining with accelerated radix sort
[MG11], the process of sorting potential candidates can be speeded
up significantly.

All these algorithms suffer from one or more of the following
problems:

® complex data structures are needed for managing nodes and
search,

® dimensionality reduction lowers filtering quality and degrades
denoising performance, especially in high-noise scenarios,

® costly pre-processing is required,

® multiple levels of indirection are not well suited for current GPU
architectures (pointer chasing),
suboptimal support for collaborative filtering,

® unreliability with high noise.

Our method addresses all of these problems and we demonstrate
its benefits in multiple applications.

Table 1: Comparison of non-local means (NLMs) filtering for the BM3D
dataset [DFKEO6] using three different search scopes. Each image is cor-
rupted with zero-mean additive Gaussian noise with o = 20, peak signal-to-
noise ratio (PSNR) = 22.12 dB; patch size 8 x 8 and number of candidates
k = 16. Global covers the whole image, Sliding window uses a symmetric
search window around each patch’s centre and Tile divides the image into
non-overlapping tiles within which we look for the patch matches.

Search scope PSNR [dB]
Global 28.44
Sliding window (15 x 15) 28.43
Tile (15 x 15) 28.19

Figure 2: The implementation of tiled collaborative filtering. The
input image is divided into non-overlapping tiles, each n x n pixels
large. Since each patch is centred around a certain pixel within a
tile, patches that are close to border of neighbouring tiles (green and
blue in the example figure) overlap and contribute to each others
filtering results.

3. ANN for Collaborative Filtering

There are several criteria our ANN method has to fulfill. It
should work on images (both 2D colour images and 3D range
images or meshes), and be able to handle fairly large patch sizes
(e.g., 8 x 8). Furthermore, the entire method, i.e., the search
structure construction, the search and the filtering, needs to be fast.
Consequently, the method has to map well on the GPU to benefit
from its massive parallelism.

We also want to take advantage of the characteristics of collabo-
rative filtering and known properties of the input data. For example,
natural images tend to be locally coherent, both spatially and tem-
porally in case of a video or an image burst. Thus, it is typically
sufficient to search for similar image patches in a close proximity
[Leb12, BCMO5], as a full search over the whole image yields only
a small-quality improvement (see Table 1) with a huge increase in
the execution time. It is also known that a relatively small number of
similar patches/candidates (e.g., k = 16) is sufficient [Leb12], and
that even this small query can be approximated.

We exploit these characteristics and limit the search space
by dividing the image into a set of tiles (see Figure 2). As we
demonstrate in Table 1 and Figure 3, for collaborative filtering
applications, the tiled search performs almost as well as a full
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Figure 3: Average error after denoising with and without patch
overlap from neighbouring tiles. (a) Example image from the BM3D
dataset [DFKEO06] before adding zero-mean Gaussian noise with
o = 20. (b) When denoising image tiles without patch overlap from
neighbouring tiles, pixels close to tile boundaries show higher resid-
ual noise than the tile centres. The overlay shows the average resid-
ual noise over all tiles. (c) With collaborative filtering across tile
borders, the average residual noise is visually uniform over the tile.

Table 2: Performance of our method as a function of tile size (BM3D
dataset [DFKEO06], patch size 8 x 8, k = 16). Each image is corrupted with
zero-mean additive Gaussian noise with o = 20 that yields PSNR = 22.12
dB. For tiles larger than 15 x 15 pixels, the improvement in image quality
becomes negligible. Increasing the tile size adds to the clustering time, but
also decreases the average NN query time due to smaller overall image tile
count.

Tile size Clustering [ms] Query [ms] PSNR [dB]
11 x 11 2.58 2.27 27.65
15 x 15 3.52 2.07 27.79
19 x 19 4.73 1.96 27.82

global or symmetrically centred search. This is because the patches
on the border of neighbouring tiles overlap, and therefore contribute
to each others filtering results.

To improve the query performance, we pre-cluster patches in a tile
so that similar patches are grouped together. While previous methods
first construct a search acceleration structure and then repeatedly
use the structure to perform a search, we fuse the data structure
construction and search, achieving a significant speed-up.

Below, we discuss the main steps of the proposed algorithm:
building the cluster list, using it to perform the ANN query and
collaborative filtering.

3.1. Pre-clustering patches within a tile

We first divide an image into tiles as shown in Figure 2. Each tile is
processed independently during query, but due to the collaborative
filtering, the outputs will overlap. A larger tile allows finding better
matches, while a smaller tile fits better into the cache or shared
memory, maximizing memory locality for each query, as shown in
Table 2.

Our preferred setup uses 15 x 15 tiles (with 225 potential
matches) and 8 x 8 patches. This patch size is a common choice,

b E KK ] S
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) (a) Sub-sampling
) (b) Run k-means algorithm

2 () Assign labels

Figure 4: Hierarchical clustering. (a) The input cluster is sub-
sampled and used to (b) estimate two new cluster centres. (c) The
patches in the input cluster are associated with the closest centre,
and then (d) reorganized to produce two new sub-clusters. The
process is repeated until the output cluster size falls below a certain
threshold.

Table 3: Impact of the sample count used by K-means clustering on NLM
denoising quality (BM3D dataset [DFKE06], 8 x 8 patches, k = 16). Each
image is corrupted with zero-mean additive Gaussian noise with o = 20,
which produces the mean PSNR of 22.12 dB with respect to the original im-
ages. Note that with very small cluster size (of 4), the performance degrades
due to low occupancy of the GPU.

Sample count Clustering [ms] PSNR [dB]
32 6.40 27.88
16 3.93 27.81

8 3.52 27.79

4 5.71 27.70

as it is large enough to be robust to noise, and small enough for
efficient processing [BCMO05, DFKE06, Leb12].

The patches are clustered hierarchically (see Figure 4). At each
step, the remaining patches (initially all the patches within the tile)
are split into two clusters. This is implemented with a variant of
K-means++ [AV07] algorithm, which we additionally modified
to remove irregular workloads and pseudo-random memory access
patterns. The new algorithm performs better on the GPU and is
summarized below:

1. Choose the first patch in the node as the first centre.
Compute ¢2 norm n; between the first patch and every other
patch and normalize the distances with ¢; = ZL’;’

3. The first patch with ¢; greater than the threshold (we use

t = 0.5) is selected as the second centre.

To speed up the process, we only perform K-means on a subset of
patches. To find the cluster centres, we evenly select, for example,
eight patches out of all the patches stored in a particular cluster.
As we show in Table 3, this sub-sampling only slightly affects the
clustering quality, but drastically reduces the computational load.
Finally, we assign each patch to the closest of the two centres.

The clustering process continues recursively until the size of the
cluster is below a threshold, which usually is twice the number of
candidates required for filtering. For instance, for non-local means
image denoising, we use the top 16 matches for each patch, in
which case we stop the recursion when the cluster is smaller than
32 patches.

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



142 Y-T. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

Table 4: Optimization strategies and speed-up for clustering for a 0.25
MPix image on a GTX 680.

Strategy Time [ms] Speed-up
Naive implementation 272.06 -
Warp-wide processing 6.54 41.62x
Persistent thread 4.84 56.16%
Parallel exchange 3.46 78.68 %

3.2. Query and candidate refinement

After clustering, we can perform the NN query. Because similar
patches are grouped within the same cluster, we do not need to
perform a traditional tree traversal; instead, for each patch in the
cluster, we simply find its NNs by inspecting the patches in the
cluster. If higher quality is required, we can search additional clus-
ters. This increases the query time, which grows quadratically with
the number of clusters being searched. However, we found that in
most cases, searching a single cluster is sufficient.

Figure 5 illustrates the parallel exhaustive search within a cluster.
For each patch, we find the indices of the kNNs within the same
cluster. We encode the indices of the NNs as a bit field, if the
maximum number of elements in a cluster is 32, a 32-bit integer
suffices. Replacing repeated tree searches with a simple cluster
lookup results not only in a tremendous speed-up, but also allows
us to efficiently implement collaborative filtering.

3.3. Collaborative filtering

After the candidate list is generated, we perform collaborative filter-
ing in parallel for each cluster. For each patch, the NNs are fetched,
the stack of matching patches is filtered and the results are distributed
to each participating patch in the output image. Since all patches
within the same cluster are likely to have some common candidates,
locality is maximized and computation can be drastically reduced.

4. Implementation

Several GPU processing models inspired the implementation of our
approach. Work queues are an efficient way to recursively construct
tree structures on the GPU [CT08, GPM11]. They enable a parallel
programming paradigm where multiple producers and consumers
can execute tasks in a coherent and thread-safe manner. Each task
is associated with a descriptor which stores the range of elements
(pixels/patches) that should be processed. The descriptors for to-be-
processed tasks are compact and can be stored in the queue in GPU
memory. The execution threads run in a loop and consistently draw
tasks from the queue until all tasks have been processed. Each task
can add new ‘child’ tasks to the end of the queue. This way of loop-
ing until all tasks have been completed is called a persistent threads
approach [ALQ9]. In contrast to previous work, which usually em-
ploys one thread per task, we use the entire thread warp. A warp
corresponds to a small group of threads which is executed in lock
step on the single instruction, multiple threads (SIMTs) hardware
used in GPUs. As we show in Table 4, this strategy significantly
increases the performance.

Our algorithm offers opportunities for extensive parallelization.
First, each tile can be processed in parallel. Second, the individ-
ual splits during hierarchical clustering can be parallelized. Finally,
candidates for each query can be determined in parallel. In a CPU
implementation, this parallelism can be exploited in a multi-
threaded implementation in conjunction with Streaming SIMD Ex-
tensions (SSE) vectorization. Using the available parallelism in a
GPU implementation faces several additional challenges:

C1: Register pressure. Keeping a local copy of a single high-
dimensional input vector may exceed the per-thread register
file. Computations such as K-means ultimately lead to spilling
registers to slower memory.

C2: Memory access patterns. The clustering algorithm groups
unrelated patches to nearby memory locations, leading to in-
efficient, scattered memory access patterns.

C3: Thread divergence. The number of instructions executed for
clustering depends on the data. Threads within the same warp
but working on different nodes will show varying execution
times and divergence hurts performance.

C4: Kernel launch overhead. Hierarchical clustering is very sim-
ilar to tree construction. The amount of parallelism close to
the root of the tree is too low for efficient GPU execution, con-
structing a tree level-by-level results in serious kernel launch
overheads, and determining efficient thread setups for unbal-
anced trees requires additional management overhead.

C5: Memory footprint. Computing and storing the candidates for
all queries in parallel can result in serious memory and band-
width requirements when storing the candidate information
(particularly important on a mobile System on Chip (SoC)).

‘We present next an efficient GPU implementation addressing all
these challenges.

4.1. Clustering

The input data for our algorithm are given by high-dimensional
patch data that usually surround the current pixel (image data) or
the current vertex (3D mesh data). Extracting this patch data from
the original input representation would significantly increase mem-
ory consumption as it duplicates the overlapping input data. Given
that the following stage simply clusters similar patches without al-
tering the patch data, we store and work on references (the pixel
coordinates). This way, cache hit rates also increase as neighbour-
ing patches access overlapping regions. In video and image stack
processing, the data reference can include the frame number; in
mesh processing, the vertex index can be used as a reference.

The major workload of clustering is formed by the 2-means al-
gorithm, which is repeatedly run on subsets of the input data to
generate a hierarchical clustering. Binary clustering is an inherently
diverging and irregular task, both at instruction level and in terms
of memory. During clustering, distances between arbitrary patches
may be computed. Clustering at thread level would impose several
problems mentioned earlier (C1-C4). When using one GPU thread
to perform the split according to the 2-means algorithm, we cannot
expect threads within a warp to access close-by memory in the input
data. Thus, memory access patterns are not cache-friendly, leading
to suboptimal performance (C2). As the runtime of the 2-means
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Figure 5: Cluster-wide KNN lookup. Finding kNNs (here 2) for all patches in a cluster (here 4) is done in two steps. (a) First, we compute a
symmetric lookup table T that stores pairwise distances & between all the patches in the cluster. (b) The voting process for each target patch
can be run in parallel (dashed orange box). For each voting process, only the distances to the target patch are of interest (8, to 6, 3 for
patch). We run through all those distances sequentially (green box) and compare how many distances fall below the current distance (red one
instead of black zero). If that number matches the target k, the corresponding KNN patches have been found (blue highlight).

algorithm depends on the initialization, data distribution and num-
ber of input elements, different threads are presented with strongly
different workloads. This results in the performance decrease due
to thread divergence (C3).

To address these problems, we developed a warp-wide binary
clustering algorithm based on shuffle instructions. Shuffle instruc-
tions permit exchange of a variable between threads of the same
warp without use of shared memory. This allows us to keep only a
subset of the high-dimensional data in each thread, reducing register
usage. Furthermore, assigning successive dimensions to the individ-
ual threads in the warp automatically leads to good memory access
patterns since the input dimensions sit next to each other in mem-
ory. Using multiple threads to split a single cluster (node) offers the
opportunity to alter the roles of individual threads for the different
steps of the k-means algorithm. Our warp-wide binary clustering
works like this:

1. Each cluster is assigned a warp for splitting it, the first centre is
set.

2. For each sub-sampled patch in the cluster, the entire warp com-
putes the distance to the first centre by executing a parallel
reduction using efficient shuffie instructions.

3. Each thread keeps one of the computed distances in a register;
the warp computes a prefix sum of these distances to choose the
second centre.

4. All threads in the warp cooperatively run at most five iterations
of the k-means algorithm. At each iteration, the two centres
are updated, and the distances are re-computed using parallel
reductions.

5. The entire warp determines for each patch the distance to both
centres for re-assignment.

6. All threads run through the patch array from the front and back
at the same time, marking non-fitting pairs for exchange. As
soon as the number of pairs to exchange matches the warp size,
all threads perform exchanges concurrently.

These steps address both C1 and C2, and also avoid divergence
(C3), as an entire warp works on the same problem. Also, the prob-

lem of low parallelism on the first levels of hierarchical clustering is
reduced, as the number of threads working at each level is multiplied
by the warp size.

The only remaining issues are the kernel launch overhead and
thread setup when creating the hierarchy (C4). To mitigate these
issues, we use a task queue [CTO8] in combination with a persis-
tent threads implementation [AL09]. A similar technique has been
used to generate bounding volume hierarchies [GPM11]. In the task
queue, we keep identifiers (lower Index and upper Index) for each
node that still needs to be split. Each worker warp draws such an
identifier pair from the queue, splits the corresponding node, puts
the identifier for one child back into the queue and starts working
on the other child. In this way, only a single kernel launch is needed
and nodes at different levels can be worked on concurrently.

The impact of these optimizations is shown in Table 4. Warp-
wide execution clearly has the highest impact on the performance,
increasing execution speed by a factor of 40. Additionally, avoiding
the kernel launch overhead and working on nodes from multiple
levels concurrently reduces the execution time by 26%. A further
29% reduction is due to the parallel exchange strategy. Overall, our
optimizations reduced execution time by 98.8% compared to a naive
implementation.

4.2. Query

After clustering, similar patches are grouped in the same cluster. The
next closest set of patches can be found in the adjacent clusters. This
spatial relationship allows us to quickly retrieve potential candidates
without costly traversal.

Considering C1-C2, we again perform warp-wide computations
instead of using a single thread to select the candidates. To determine
the candidates for an entire cluster, we use a block of threads. Each
warp is then used to compute a set of inter-patch distances. To
minimize divergence, each warp is assigned to a cluster. Like with
warp-wide binary clustering, we perform warp-wide reduction to
compute the norm. Because the distance is symmetrical, we can
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Table 5: Optimization strategies and speed-up for query for a 0.25 MPix
image on a GTX 680.

Strategy Time [ms] Speed-up
Naive implementation 171.19 -
Warp-wide processing 10.85 15.78 x
No tree 5.86 29.21x
Voting 3.33 51.41x
Compressed candidates 3.17 54.00x

pre-compute all the pairwise distances within a cluster, and store
them in shared memory, as illustrated in Figure 5. Each entry T'(i, j)
stores the value of §; ; for patches P; and P;.

Once the matrix is computed, each warp is assigned to generate
the candidates for a single patch P;. Instead of sorting all candidates,
we follow a voting scheme, which turned out to be nearly twice as
fast as sorting: each patch P; in the cluster is uniquely assigned
to one of the threads in the warp. If the cluster size matches the
warp size, every thread is responsible for a single patch. We then
iteratively try to find the distance threshold A w.r.t. P, which yields
k candidates. Because all the possible thresholds are in the matrix,
we only iterate over the stored distances. To compute the number
of patches that fall within the threshold, we use ballot and popc
instructions. This is the whole process:

1. Each thread block is assigned to a cluster.
Compute distance §; ; using warp-wide reduction and store the
resultin 7(i, j) and T'(J, i).

3. Each warp is assigned to determine the candidates for a single
patch P.

4. Find at most k patches whose distance to P; is less than or equal
to X iteratively via voting, where A = T'(i, s).

In our algorithm, candidates are only searched for in the same
cluster or within two neighbouring clusters with additional expense
of shared memory. Thus, all candidate patch references are close
in memory after indexing. We can exploit this fact to reduce the
memory requirements when encoding the candidates (CS5). Instead
of storing each individual candidate index, we only store the candi-
date index within the cluster using a bit field. This strategy allows
us to use the result of the voting scheme (ballot instruction) directly
to encode the candidates, reducing the memory requirement to as
many bits as there are elements in a cluster.

The impact of this optimization is shown in Table 5. Warp-wide
execution again has the highest impact on the performance, speed-
ing up search by a factor of about 16. Avoiding the tree traversal
nearly halves the execution time. Another 43% reduction compared
to sorting is achieved by the voting scheme. Finally, the compressed
candidate encoding reduces execution time by merely 5%. How-
ever, this optimization reduces the memory required for candidate
encoding by one order of magnitude.

4.3. Filtering

While we only covered clustering and query in more detail, most
of these techniques can also be used during the filtering stage that

follows the query stage in most applications. When working with
patch data, we again use an entire warp to work on a single patch
to reduce register pressure and per-thread shared memory require-
ments. All optimizations reducing data load and store can also be
used during filtering.

During collaborative filtering, we take advantage of the grouping
of similar patches. Often, steps in collaborative filtering, such as
the transformation in BM3D filtering or the distance computations
between patches in NLM, can be formulated as pre-computations.
Running such pre-computations on the entire input data and storing
it in memory is often wasteful, e.g., computing a 2D DCT on every
input patch increases memory consumption by the patch dimen-
sions, as all patches need to be stored individually. In our filtering
implementations, we start a block of threads for each cluster and
run these pre-computations only for the patches in that cluster. In-
termediate results can be stored in fast local shared memory. We can
also cache the filtering results in this fast memory. After the entire
cluster has been filtered, we transform the data back to the original
domain and write the data to global memory once.

Our candidate encoding scheme allows further optimizations. In
many cases, the same set of candidates is used for multiple patches
in a cluster, i.e., if patches b and ¢ are candidates for a and a and
¢ are probably going to be candidates for . Thus, we can run (at
least some) computations only once for all patches that share the
same candidate set and use the results for all patches. Due to the
bitwise candidate encoding, we can efficiently find equal candidate
sets using simple comparisons.

5. Evaluation

We compare our algorithm against other ANN methods, focusing on
quality and performance. We break the evaluation into the following
tests: (i) NN query, (ii) image quality and (iii) performance. For a
fair comparison, we only select well-known algorithms that support
kNN queries and work with different collaborative filters. If not
specified differently, all tests work on 8 x 8 patches, and use k = 16.

NN query (NNQ). We use two metrics to evaluate the quality
of the NNQ. First, we compute the overlap between the delivered
kNNs with the ground truth determined via exhaustive search, i.e.,
how many candidates does the ANN method get right. Second, we
compute the ratio between the sum of distances of the delivered can-
didate patches and the ground truth D,,,/ Dy, i.€., by how much
does ANN increase the average patch distance. These two metrics
characterize how close the result of approximation strategy is to
the ground truth. Table 6 shows the results for randomized KD-trees
[PCI*07, SAHO8], K-means trees [FN75], composite trees [ML], hi-
erarchical clustering [MLO09], generalized patch-match [BSGF10]
(for meaningful comparisons, we only use translations, not scale
or rotation), random ball cover (RBC) [Cay10] and our approach.
We used the images from the BM3D dataset [DFKE06] and per-
formed NNQ for each 8 x 8 patch within every 15 x 15 tile as our
benchmark.

Image quality. To evaluate the effects of ANN search on col-
laborative filtering, we ran patchwise non-local means filtering
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Table 6: Quality metrics for different ANN methods for the BM3D dataset.
Our approach returns almost 40% of the NNs. The average distance of the
patches returned by our method is 32% worse than the ground truth. RBC
gives good results, but its total execution time is over 1000x longer.

Method % of correct Dann/Dxnn
Randomized KD-trees 24.87 3.01
K-means 34.86 2.00
Composite 35.21 1.99
Hierarchical clustering 7.18 7.38
Generalized patch-match 0.22 23.91
RBC 97.88 1.01
Ours 39.01 1.32

Table7: Average PSNR for 11 images [DFKEO0G6] corrupted with zero-mean
Gaussian noise with o = 20/255. Patchwise NLM and BM3D filtering use
different ANN methods.

Method NLM [dB] BM3D [dB]
Randomized KD-trees 26.88 30.72
K-means 27.13 30.68
Composite 27.02 30.57
Hierarchical clustering 25.65 29.87
Generalized patch-match 21.24 28.92
RBC 27.83 30.71
Ours 27.79 31.05
Exhaustive search (GT) 28.55 31.10

[BCMO5] and BM3D filtering [DFKE06] on the dataset from Dabov
et al. [DFKEO06]. We added zero-mean additive Gaussian noise with
o = 20/255 to the 8-bit data values. We then ran the ANN algo-
rithms on these input images in tiles and collaboratively filtered the
returned candidates as in NNQ evaluation. The results are shown in
Table 7. Our method is only slightly worse than RBC, and maintains
the highest performance among all ANN methods with BM3D.
Note that our method achieves a higher PSNR value than RBC for
BM3D filtering. This is because our approximation is less likely
to match noise to noise. We also tested with and without searching
the neighbouring two clusters, as mentioned in Section 3.2; the
improvement was modest (0.1 dB), and the cost is quadratic. Thus,
all the evaluations only consider a single cluster during query.

Performance. As most ANN approaches require pre-processing,
we measure and report the times for both clustering and query on
an Intel 17-950 with 8 GB of RAM and an NVIDIA Geforce GTX
680. The FLANN CPU implementations are optimized with multi-
threading, and the window search uses SIMD (SSE2). The input
resolution is 0.25 MP, and k = 16 candidates are to be retrieved for
each pixel.

The results of this test are shown in Table 8. The runtimes of
all four FLANN implementations (KD-trees, K-means, composite
and hierarchical clustering) are very similar. The time is split fairly
evenly between pre-processing and query. All four CPU methods
deliver their results in about a second, indicating that the imple-

Table 8: Runtime for different NN methods. Our method is significantly
faster than other methods while still delivering high-quality results.

Method Clustering Query Total [ms]
Randomized KD-trees 407.00 380.00 788.00
K-means 670.00 312.00 982.00
Composite 666.00 357.00 1024.00
Hierarchical clustering 415.00 601.00 1017.00
Generalized patch-match 0.00 8930.00 8930.00
Window search (CPU) 0.00 36700.00 36700.00
kNN-Garcia (GPU) 25466.00 398.00 26359.00
RBC (GPU) 10837.00 491.00 11328.00
Window search (GPU) 0.00 594.99 594.99
Window search (GPU opt) 0.00 48.30 48.30
Ours (GPU) 3.55 4.04 8.19

mentations are very similar, only the clustering criteria change.
Generalized patch-match does not do any pre-clustering, and thus,
takes nine times longer for queries. However, by using information
from neighbouring pixels to guide the query process, it is about
four times faster than a brute force window search. Implementing
the same brute force window search on the GPU, the entire query
process is done in less than 600 ms, faster than any approach on
the CPU. Applying the same optimization strategies for the window
search as we used for our approach (warp-wide execution, voting
instead of sorting), we lowered the execution time by 90%. How-
ever, our approach is still six times faster, completing clustering in
3.6 ms and query in 4.6 ms. Our approach takes less than 1% of the
execution time of the fastest CPU implementation.

We compared our method against two other GPU-based ANN
methods: kNN-Garcia [GDNB10] and RBC [Cay10]. Unlike our
approach, these methods are not designed to work on small tiles and
therefore struggle to perform in this mode (see Table 8). Disabling
tiled processing significantly improves their runtime performance—
kNN-Garcia took 590.73 ms to complete, and RBC finished in 2565
ms. These numbers, however, are still far from our results. Moreover,
a large input patch-set greatly reduces the ANN quality. In case of
RBC, disabling tiled processing caused ANN accuracy drop from
97.88% to 33.49%.

We also implemented our algorithm for different architectures.
Running on the CPU (Core i7-950), it takes 130 ms to retrieve
16 candidates for 0.25 MPix images. On a mobile GPU (Tegra
K1), it takes 122.3 ms, which is even less than the desktop CPU
version. Furthermore, our method has a small-memory footprint.
For a 0.25 MP image, we only require 5 MB of additional storage.
As we can process the image in tiles, we can keep the memory
requirement constant while supporting arbitrary image sizes. We
can increase the number of concurrently processed tiles for future
GPU architectures, which may require a higher workload.

6. Applications

We demonstrate our method for several applications in image pro-
cessing, global illumination and geometry refinement.
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Table 9: Comparison between the original CBM3D implementation
[DFKEO06] and our GPU-enabled methods. While our BM3D implemen-
tation loses only 0.1 dB in terms of quality, it is more than 1000 times faster.
Further improvement in runtime can be achieved by switching to a simpler
filter-like NLM filter (at the cost of reduced denoising performance).

PSNR [dB] Runtime [ms]
Input 18.58 -
CBM3D 30.44 812000
Our BM3D 30.34 703
Our NLM 25.75 39

Single-frame noise reduction. It is the primary motivation for
many collaborative filtering techniques. Many ANN and accelera-
tion methods have been proposed for this domain, but they either
have to rely on additional post-processing to improve the quality
[CKYY13] or work only in conjunction with a limited number
of filters [AGDLO09]. Our method is independent of the choice of
filters, while providing consistent quality without additional post-
processing. In Table 9, we compare our method against the original
CBM3D implementation using their dataset [DFKEO6]. Again, we
added zero-mean Gaussian noise with o = 20/255 to all images.
For a fair comparison, both CBM3D and ours are configured to use a
discrete cosine transform as the 2D transform, the Walsh—-Hadamard
transform in the third dimension, and operate in opponent colour
space. The only difference is that CBM3D uses a brute-force win-
dow search. Our candidate list encoding (Section 4.2) enables us to
implement filtering very efficiently on the GPU. The results show
that our method is very close to the original implementation, yet
significantly faster.

Burst noise reduction. Current digital cameras can operate in a
burst mode where they quickly capture multiple frames. Simple
accumulation of frames from such a burst stack can significantly re-
duce the noise and improve the overall SNR. The upper bound of this
improvement is proportional to /N, where N is the stack size. This
approach, however, fails for scenes with motion, where naive accu-
mulation produces visible ghosting artefacts. To mitigate this issue,
we perform single-frame denoising, but look for similar patches not
only in the spatial, but also in the temporal neighbourhood [DFE07].
This requires a slight modification of the clustering part of our algo-
rithm, which now processes the data at a particular tile location from
all frames at once. Then, we perform non-local means filtering for
each patch from the reference image. In Figure 6, we compare our
method to Gaussian KD-Trees [AGDLO09], which support both burst
noise reduction and GPU acceleration. For single-frame denoising,
Gaussian KD-trees and our approach achieve similar PSNR values,
while ours is more than 1500 times faster. For an entire burst stack,
our implementation achieves a 3 dB better PSNR while being 2000
times faster. Denoising an entire burst stack is a difficult task for
Gaussian KD-trees, as the data become high-dimensional and re-
quire PCA pre-processing. As Gaussian KD-trees require multiple
parameters to be set and have a very long running time, tuning the
approach for optimal image quality is a difficult process.

Global illumination. Many modern interactive global illumina-
tion techniques apply guided noise reduction on sparsely sampled
indirect illumination [BEM11]. We verify the applicability of
our ANN method by using the output from a direct illumination
forward rendering pipeline as guidance for performing NN query.
Clustering is done on the guidance image only, using an 8 x 8§ patch
size. To enhance clustering stability in the shadow regions, we
increase the ambient light in the scene. During query, we operate on
the guidance data, but return samples from the indirect illumination,
which we combine with direct illumination to generate the final
result. Results are summarized in Figure 7.

Geometry denoising. Range data produced by 3D scanners are
usually noisy and require post-processing [LPC*00]. Self-similarity
in the scan data can also be used to reduce this noise. Gaussian
KD-trees, in conjunction with NLM filtering, have been used for
this task [AGDLO09], extracting a detail layer of the mesh after
applying Laplacian smoothing. To evaluate the suitability of our
ANN algorithm, we replaced Gaussian KD-trees with our approach
to generate filtering candidates. The results of this evaluation are
shown in Figure 8.

Joint image upscaling and denoising. Recently introduced image
upscaling algorithms [FF11, YLC13] exploit local patch-level self-
similarity to improve the apparent resolution of images and videos.
These methods produce remarkable results as long as the input data
are of good quality. For noisy images, such as those produced by
mobile cameras, the reconstruction quality decreases significantly
(see Figure 9b). This is because the noise in the image is considered
a texture and is upscaled together with the underlying image con-
tent. To amend the image quality, denoising can be applied before
upscaling (Figure 9c). This pre-mature denoising, however, does not
remove all the noise, and may compress details that the upscaling
method would need.

To address these issues, we fuse NLM denoising with the upscal-
ing algorithm based on a variant of Yang et al.’s method [YLC13].
This method iteratively increases the resolution by non-dyadic ra-
tios, e.g., 5:4, and at each iteration performs two basic steps. First,
we use a bicubic filter to generate an initial high-resolution esti-
mate, which is then refined by adding a hallucinated high-resolution
Laplacian band. For small upscaling ratios, many patches in the
input image exhibit local self-similarity, i.e., they are cropped ver-
sions of their upscaled selves. This property allows us to recon-
struct the high-resolution Laplacian patch simply by copying it
from the Laplacian of the low-resolution input. The copying in-
volves a small local search (e.g., 3 x 3 pixels) as we want to copy
from a location where both the initial estimate and the input im-
age look alike. We can repeat this procedure for all the pixels in
the image to produce a complete approximation of high-resolution
Laplacian.

We have modified this algorithm in two significant ways. First,
prior to the bicubic upscaling stage, we apply a strong NLM denois-
ing on the input image. This filtering step removes most of the input
noise and prevents the bicubic filter from treating it as a texture.
Second, for the low-resolution Laplacian band generation, we use
the noisy input image and allow the reconstruction algorithm to use
more than one candidate (k = 16) for the high-resolution Laplacian
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First frame of stack: |GKD-Trees / first frame|Ours NLM / first.frame GKD-Trees / stack Ours NLM / stack Ground truth
26.45dB

31.01dB// 11.3s 31.90dB// 0.02s 31.53dB / 1080s 34.10dB// 0.52s

Figure 6: Burst image denoising. The fence dataset (16 images) was corrupted with additive Gaussian noise of o = 12/255. Each frame in
the stack is 1.4 MP with random warping to simulate camera motion. Both Gaussian KD-trees and ours run on the same GPU. Parameters
for both methods are adjusted for the best image quality. We measured end-to-end processing time from clustering, query and filtering on a
GTX 680. Notice that our method significantly outperforms Gaussian KD-trees in both cases.

Ground truth.(1024spp) = Window search

Ny Xy £ \ Xy

35.63dB /2435 . 35.11dB / 2.20s 35.06dB / 2.27s

Figure 7: Global illumination reconstruction. ANN methods can be used to speed up the filtering of noisy Monte-Carlo global illumination
rendering. Our ANN method achieves nearly the same quality as window search. In terms of PSNR, both approaches are similar to a 512spp
rendering.

,oVJd" \
Noisy input

Figure 8: Geometry denoising. Our ANN algorithm can also be used to find candidates for NLM filtering 3D meshes. Noisy input is
generated with o set to half of the average edge length. The reconstructions of our method and exhaustive search with k = 256 are visually
indistinguishable.

patch. We weight these patches using the NLM weighting scheme Laplacian in the first iteration only. We demonstrate the upscal-
to produce a high-quality and noise-free estimate of image details. ing quality of the proposed approach in Figure 9(d). As in pre-
The entire procedure can be repeated in subsequent iterations to vious applications, our ANN algorithm generates results visually
yield a stronger noise suppression. In our experiments, however, we indistinguishable from naive window search (Figure 9e) method
found that it is sufficient to denoise the input and corresponding while being orders of magnitude faster.
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Figure 9: An example of joint noise reduction and 2x upscaling. (a) Input low-resolution and noisy images (Gaussian noise of o = 10). (b)
Directly upscaling such images produces unappealing results as noise is interpreted as image structure. (c¢) Denoising with NLM prior the
upscaling improves the quality; however, some residual in the low-resolution input remains and gets amplified during the upscaling. (d, e)
Fused denoising and upscaling removes most of the noise without affecting image features important for the upscaling. The results generated
with FastANN (d) method are visually indistinguishable from naive window search (e).

Figure 10: Joint noise reduction and 2 x upscaling for videos. (a) Input low-resolution and noisy video sequences (Gaussian noise of o = 10).
(b) Directly upscaling frames produces unappealing results as noise is interpreted as image structure. (c) Joint denoising and upscaling in
spatial domain, with a search window of 5 x 5. Some compression and chroma noise artefacts remain. (d, e) Joint denoising and upscaling
in spatio-temporal domain, with a search window of 2 x 2, removes most of the artefacts while preserving small details, such as moles on the
skin. (d) Temporal window of 2 frames. (e) Temporal window of 4 frames.

Joint video upscaling and denoising. Our method can be further are often highly correlated, extending candidate search to temporal
extended to support spatio-temporal upscaling. Although several dimension can result in better matched patches. With a stationary
video upscaling algorithms have been proposed [LS11, DFKEOS], camera, we can even reduce the search radius, as good candidates
finding similar patches in both temporal and spatial domain can be are available at similar image locations in neighbouring frames. Our
quite time-consuming. However, because consecutive video frames approach makes joint video upscaling and denoising feasible.
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The proposed video upscaling method combines our joint image
upscaling and denoising algorithm with burst denoising. Instead of
searching for matching patches only in the input image, we extend
the search to include data from the adjacent frames. Like with joint
upscaling and denoising, we first perform strong NLM denoising
on the individual image frames, followed by a bicubic upscaling
on all frames. Next, we use the data from all the frames to recon-
struct the Laplacian image containing high-frequency details of the
current frame. Due to high temporal coherence of the video data,
we expect image features to change smoothly in time. Therefore,
searching around the same location within £5 frames temporal
neighbourhood gives us additional well-matched candidates, which
we can use to recover lost details, even if individual frames have been
corrupted with noise. Obviously, the computational complexity of
this operation increases linearly with the number of frames included
in the search. The final high-resolution video frame is produced by
adding up the reconstructed Laplacian to the upsampled input frame.

To increase the upscaling factor, the same algorithm can be
applied iteratively on the output of the previous run. Each iteration
increases the number of required images, e.g., the second iteration
uses £5 upscaled frames in the temporal domain, whereas each
of them already required £5 at the lowest resolution. Due to high
computational overhead, such an upscaling scheme could possibly
be used in an offline pre-processing step. Our experiments show
that reducing the temporal search radius for successive iterations
did not degrade the perceived image quality.

For online video upscaling, we consider a single iteration of our
algorithm for which we only need to keep the previous x frames for
all scale factors in memory. Figure 10 demonstrates the results on
two standard super-resolution datasets.

7. Summary and Conclusions

We have presented an ANN method building on the combination of
tiling, hierarchical clustering using 2-means and query within a sin-
gle cluster. According to our evaluation, our approach can be used
as input for high-quality, state-of-the-art collaborative filtering in
multiple application domains, such as denoising, super-resolution,
burst imaging, global illumination post-processing, geometry recon-
struction and image upscaling. Our approach allows for significant
GPU acceleration, with only a minimal quality reduction compared
to exhaustive search.

Using warp-wide execution (instead of single threads) to work
on a patch, avoiding kernel launches, and dynamically changing
the work assignment for threads, results in speed-ups between 54 x
and 79x compared to a naive GPU implementation. Compared to
state-of-the-art ANN methods, we achieve significantly better ap-
proximations to the ground truth exhaustive search while being up
to 100 times faster. Compared to Gaussian KD-trees [AGDL09] an-
other GPU-based method, we are up to 2000 x faster while achieving
better image quality.

While our method is designed to work with any collaborative
filtering approach, our implementation enforces some restrictions.
Our implementation works very well in certain parameter ranges,
e.g., patch size 4 x 4, 8 x 8 or 16 x 16. Parameter setups that con-
flict with the GPU warp size or require too much shared mem-

ory can reduce the performance by up to an order of magnitude.
In the future, we want to explore the acceleration of complex
computation chains where collaborative filtering is the bottleneck,
such as end-to-end camera pipelines, video processing and image
editing.
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