
Fast Multi-View Rendering for Real-Time Applications

Johannes Unterguggenberger1, Bernhard Kerbl1, Markus Steinberger2, Dieter Schmalstieg2, and Michael Wimmer1

1TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria
2Graz University of Technology, Austria

Abstract
Efficient rendering of multiple views can be a critical performance factor for real-time rendering applications. Generating more
than one view multiplies the amount of rendered geometry, which can cause a huge performance impact. Minimizing that impact
has been a target of previous research and GPU manufacturers, who have started to equip devices with dedicated acceleration
units. However, vendor-specific acceleration is not the only option to increase multi-view rendering (MVR) performance. Available
graphics API features, shader stages and optimizations can be exploited for improved MVR performance, while generally offering
more versatile pipeline configurations, including the preservation of custom tessellation and geometry shaders. In this paper,
we present an exhaustive evaluation of MVR pipelines available on modern GPUs. We provide a detailed analysis of previous
techniques, hardware-accelerated MVR and propose a novel method, leading to the creation of an MVR catalogue. Our analyses
cover three distinct applications to help gain clarity on overall MVR performance characteristics. Our interpretation of the
observed results provides a guideline for selecting the most appropriate one for various use cases on different GPU architectures.

CCS Concepts
• Computing methodologies → Rasterization; Visibility; Virtual reality;

1. Introduction

Consumer-grade head-mounted displays (HMDs) have become pop-
ular for virtual reality (VR) in recent years, and new VR games are
being released regularly. At the time of writing, Valve’s Steam Store
already lists more than 4000 games tagged as "VR Only" [Val03].
Inherent to VR games are increased requirements on the rendering
performance of a PC or gaming console because every frame has
to be rendered at least twice—i.e., at least once for each eye—with
view positions slightly offset. However, two views might not be
sufficient for an HMD with a wide field of view and non-coplanar
displays [BS18]. Four or more views can be required for such setups.

Efficient rendering of multiple views does not only have its ap-
plications in VR rendering or in rendering for multi-monitor/multi-
projector setups. Multiple ID buffers containing primitive IDs can be
evaluated in order to determine which primitives are visible from a
range of viewpoints, i.e., a potentially visible set (PVS). Such a PVS
can be used to e.g. shade all triangles which may become visible
under head movement [MVD∗18]. Another application scenario
is shadow mapping for multiple light sources. Each light source
represents the origin of at least one view frustum that corresponds to
the region that is illuminated by that light. For omnidirectional lights
and algorithms like cascaded shadow mapping [Dim07], multiple
views must be rendered per light source.

Producing multiple views per frame while maintaining frame
rates of at least 60Hz can be challenging. Rendering effort depends
heavily on the scene representation and the graphics processing unit

(GPU) which renders the scene. For real-time VR applications, usu-
ally, the requirements are even higher. Vlachos [Vla16] recommends
staying below 10ms time per frame to achieve stable frame rates at
90Hz. In general, it can be stated that there is a need for multi-view
rendering (MVR) techniques which enable efficient processing of
several viewpoints and are versatile enough to be used for arbitrary
scene setups and across different GPUs.

Hardware manufacturers such as Oculus [Eve16] and NVIDIA
[NVI18b] have shown increased interest in the efficient rendering
of multiple views. Hardware-accelerated MVR is commonly ex-
posed as an extension for existing graphics APIs. For OpenGL and
OpenGL ES, the extension is called OVR_multiview [Cas18] and has
been implemented by NVIDIA, ARM, Qualcomm, and Imagination
Technologies. Hardware-accelerated MVR is likely to outperform
any other approach for MVR, including software techniques that
make intelligent use of shader programs to minimize the number of
draw calls and memory transfer [Wil15, DNS10].

However, to the best of our knowledge, there is little information
available that lets one quantify the actual benefits of using one MVR
method over another on recent GPU models. An additional caveat for
desktop systems is that hardware-accelerated MVR on consumer-
grade NVIDIA GPUs is limited in its applicability to real-time
graphics, due to its lack of geometry shader and tessellation shader
support [Wil16]. A detailed analysis of available MVR methods with
modern graphics APIs would enable developers to make informed
choices in their design without resorting to a trial-and-error process.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

To gain clarity about the performance of hardware-accelerated
MVR and software-based methods for GPUs, we provide an exhaus-
tive evaluation of various techniques for rendering with multiple
viewpoints in different scenes on a range of recent GPU models,
for three distinct MVR applications. Specifically, we evaluate rel-
evant MVR methods in the context of ID buffer generation for
PVS, lightfield G-buffer rendering and shadow mapping. For our
performance tests, we implement and test more than 50 different
rasterization pipeline configurations, including the techniques of
Sorbier et al. [DNS10], Wilson [Wil15], Vlachos [Vla15], different
variants of hardware-accelerated MVR pipelines, and altogether new
variants. To facilitate the identification and imparting of individual
methods, we introduce a formalized syntax to describe custom MVR
pipelines. In summary, our contributions include the following:

• We introduce a symbol-based description language to declare
specific pipeline configurations for MVR in a concise manner.
• We examine the emergent performance characteristics of available

hardware-accelerated MVR and compare them to other pipeline
variants, including previously published techniques.
• We analyze and interpret performance trends for the most rele-

vant MVR pipeline variants across different GPUs and scenes.
In comparison to previous work, we also consider much larger
configurations with up to 32 simultaneously rendered views.
• We describe two optimized, geometry shader-based MVR vari-

ants and identify applications where they can be used as viable
alternatives to hardware-accelerated MVR. In contrast to the latter,
these general variants preserve full support for custom tessellation
and geometry shader routines on consumer-grade devices.

In the following, we summarize related work and previous efforts
to achieve efficient MVR in hardware and software (Section 2). In
Section 3, we introduce our symbol-based parameter syntax for
describing different pipeline variants that are suitable for MVR. Our
setup and full evaluation, along with obtained results, are described
in Section 4. We analyze emergent performance trends and give
interpretations, as well as additional important insights in Section 5.
Finally, we provide a summary and outlook in Section 6.

2. Related Work

A considerable body of previous work has addressed the problem of
multi-view rendering in computer graphics. As long as view posi-
tions only change in terms of rotation, textured impostor rectangles
can be used as stand-ins for actually transformed scene geome-
try [SS96]. Halle et al. present an alternative scene representation
and rendering algorithm that enable significant speedup of view-
dependent computations by enforcing restrictions w.r.t. the discrep-
ancies between views [Hal98]. Specifically, all camera positions
must lie on a single translational axis along which views can be
sampled. Sitthi-Armon et al. [SaLY∗08] describe how to make use
of reprojection to avoid shading computations for slightly differing
views by using cached results from previous frames. A particular
application of decoupled sampling is the smooth generation of visi-
bility for multiple new views, yielding superior results to caching
approaches [RKLC∗11].

Beyond straightforward implementations, there are several as-
pects of image synthesis with MVR that bear potential for optimiza-
tion. Adelson et al. [ABC∗91] provide a detailed analysis on this

topic in the context of stereoscopic projections. The authors propose
several methods to avoid duplicate attribute computations, efficiently
cull geometry that is invisible to both eyes and resolve visibility
by combining Z-buffers with BSP trees for depth testing. Based on
these ideas, several methods and mechanisms for modern graphics
APIs have been proposed to improve the performance of MVR over
simple multi-pass rendering. Marbach [Mar09], as well as Beck et
al. [BSF10], provide basic evaluations on the benefits of geometry
shaders and layered rendering for MVR, with mixed results. The
techniques of Marbach [Mar09] and Sorbier et al. [DNS10] have in
common that they aim to reduce driver overhead and increase GPU
utilization by supplying all active views with a single draw call:
rendered geometry is amplified in a geometry shader loop. Each
view’s pixel values are written to a separate layer of an array tex-
ture [Mar09] or to an exclusive region in a single texture, where the
single texture contains all views to be rendered [DNS10]. An aspect
of the technique by Sorbier et al. is that culling and clipping cannot
be performed implicitly by the rasterizer, which the authors address
by discarding all "out of bounds" writes in the fragment shader.

A more recent approach by Wilson [Wil15] also relies on the
single-texture approach, but uses instanced rendering to achieve ge-
ometry amplification. Furthermore, they define custom clip planes
in the vertex shader to avoid out of bounds writes, thus saving on
potentially expensive fragment discards. To achieve efficient MVR
with point type primitives, Marrs et al. [MWH18] avoid the ren-
dering pipeline altogether and use compute shaders instead. Unfor-
tunately, previous work on software GPU rasterizers has shown
that similar performance gains cannot be expected for triangle
meshes [KKSS18].

Hasselgren et al. [HAM06] have conceived and simulated their
prototype of a complete VR-oriented architecture that aims to max-
imize exploitation of coherence between views. Starting with the
Pascal microarchitecture, NVIDIA has added built-in hardware sup-
port for MVR that is exposed in VRWorks [NVI18b] and OpenGL
by the Oculus Virtual Reality (OVR) multi-view extension [Cas18].
Driven by the need for fast stereoscopic projection in VR, the Sin-
gle Pass Stereo functionality optimizes rendering to two separate
viewpoints. With the Turing microarchitecture, NVIDIA has fur-
ther expanded on this feature set by adding support for accelerated
rendering of up to four separate viewpoints [NVI18a].

Recently, streaming rendering techniques for VR have been pro-
posed [MVD∗18, HSS19b]. Inspired by early work on optimizing
VR application pioneered by Regan et al. [RP94], these approaches
require the computation of a potentially visible set (PVS) of ge-
ometry to be shaded on a server and then streamed for framerate
upsampling to a client, e.g., a head-mounted display. For PVS com-
putations, these approaches render four to eight frames along the
predicted head movement, leading to a typical MVR problem: gen-
erating multiple primitive ID buffers quickly. As an alternative to
sampled visibility, Hladky et.al [HSS19a] proposed a conservative
single pass PVS computation. While this avoids MVR, it requires up
to a hundred ms for typical scenes, raising the question of whether
efficient MVR rendering may not be a better solution to the problem.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

3. Classification

In order to exhaustively analyze the properties of different MVR
techniques and discuss their mechanics, we first establish a method
classification catalogue that enables us to capture all relevant prop-
erties with a compact, intuitive representation. To this end, we in-
troduce a formal notation to represent an arbitrary MVR technique
that processes N different views as a pipeline function P(. . .) whose
parameters define its implementation specifics. We propose a param-
eter set that is based on the variety of pipelines presented in previous
work, as well as additional attributes that we found to facilitate
their classification in practice during our experiments. In our current
model, we consider four essential properties:

Pipeline invocation count The number of times the pipeline must
be run from start to finish in order to process all N views.

Geometry amplification The mechanism used for producing suffi-
cient copies of the input geometry to provide each view.

Custom culling Required or supplemental steps included in the
pipeline to perform culling and/or clipping of triangle primitives.

Framebuffer Layout The layout and configuration for the frame-
buffer object that the fragment shader writes its output to.

In the following, we elaborate on the significance of each individual
parameter and its effects on technique configuration. In addition, we
provide illustrations of selected pipeline examples.

List of Symbols

Geometry Amplification
Direct forwarding
Amplification by instanced rendering
Amplification by geometry shader loop
Amplification by geometry shader instancing
(Accelerated) OVR geometry amplification

Framebuffer Layout
... Separate framebuffer objects

... Single large, partitioned framebuffer
... Layered framebuffer
... Multiple partitioned framebuffers
... Multiple layered framebuffers

Culling & Clipping
CLIPVP Clipping with reduced viewport
CLIP|| Clipping with clip planes
CLIPFS Clipping in fragment shader
VFCGS Frustum culling in geometry shader
BFCGS Backface culling in geometry shader

3.1. Pipeline Invocation Count

When executing an MVR pipeline, it may be desired or necessary
to run the entire pipeline multiple times. Let us consider the most
straightforward method to achieve MVR, which is to invoke multiple
draw calls that write the result for each of the N different views to
a separate target texture. In this case, the graphics pipeline must
run from start to end N times per scene entity to produce N views.
Figure 1a illustrates this basic pipeline setup and the necessary steps
for each invocation.

Running the full pipeline multiple times may also be required
to circumvent hardware restrictions for specific techniques. For
instance, the OVR extension enables efficient hardware acceleration
on NVIDIA Turing models only when using four target views or
fewer [NVI18a]. One way to evaluate hardware-accelerated MVR
for a larger number of views is thus to split the N views into groups
of four and invoke the entire pipeline multiple times. We indicate
such an approach by setting the first parameter of a pipeline function
to

⌈N
4
⌉
. On the NVIDIA Pascal microarchitecture, only two views

can be hardware-accelerated [NVI16], therefore, e.g., a test with⌈N
2
⌉

invocations would be of particular interest in such a scenario.

3.2. Geometry Amplification

The key requirement for achieving MVR is the amplification of the
input geometry, cuing the rasterizer to render multiple instances of
each primitive—once for each view. Modern graphics APIs offer
various ways to achieve this amplification at different access points
in the pipeline. The choice of access point affects the quantity and
nature of work that the GPU must handle. The earlier amplification
occurs, the more stages must process an amplified amount of data.

At its earliest, geometry amplification can be done at the very
beginning of a rasterization pipeline, which effectively means invok-
ing the pipeline multiple times, each time with a different viewpoint
location. In this case, all geometry that enters the pipeline is sim-
ply forwarded. We indicate this behaviour by the symbol in
the pipeline’s geometry amplification parameter field. The simple
pipelines in Figure 1 both use this setting. In order to reduce the
number of draw calls without losing any flexibility, API calls that
perform instanced rendering (signified by) can be used instead.

In the case of MVR, we are only interested in duplicating view-
dependent computations. By moving the amplification to the end
of the geometry stage, we can thus avoid redundant invocations
of vertex shaders that, e.g., compute skeletal animation, which is
uniform across all views in a given frame. In the geometry shader,
output primitives can either be emitted in a loop () or, if the
number of duplicates is fixed, via geometry shader instancing ().

Finally, specific extensions for MVR have been added to render-
ing APIs. A powerful example is the OVR extension: on modern
NVIDIA GPUs, it enables hardware-accelerated geometry amplifi-
cation, which exploits re-usability of shading results across multiple
views. On architectures that have no built-in support, the OVR func-
tionality will usually fall back to a looping behaviour. We indicate
this (flexible) type of geometry amplification with the symbol.
The declared target application for this functionality is stereoscopic
rendering for VR, where the majority of geometry computations and
visibility tests are valid for both eyes [NVI18b]. Unfortunately, using
the OVR extension also prohibits the use of any custom tessellation
or geometry shaders on all consumer-grade GPUs [Wil16].

Note that for all amplification methods, the number of copies
generated is implicitly given by the number of times a pipeline is
run. If it is called only once, geometry amplification must generate
N copies. For

⌈N
4
⌉
, each run must amplify the input geometry by

a factor of up to ×4. A pipeline that does not generate sufficient
geometry for all N desired views is not valid in our definition.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

CPU GPU

activate framebuffer j

set view-matrix j

issue draw-call k
vert frag

loop k = [1..D]loop k = [1..D]

loop j = [1..N]loop j = [1..N]

FB[1] ... FB[N]

render
into
FB[j]

(a) Illustration of the MVR pipeline P(N, , ...)

CPU GPU

activate framebuffer
... [N]

...

... ...

[1] ...

set viewport j

set view-matrix j

issue draw-call k
vert frag

loop k = [1..D]loop k = [1..D]

loop j = [1..N]loop j = [1..N]

render into
viewport j

(b) Illustration of the MVR pipeline P(N, , ... ,CLIPVP)

Figure 1: Examples of MVR configurations corresponding to our definition syntax. (a) A straightforward MVR pipeline uses N invocations to
write each view into a different framebuffer. (b) A multi-pass variant with a single, partitioned framebuffer and varying viewports for clipping.

3.3. Custom Culling and Clipping

Some MVR techniques require additional steps after geometry am-
plification and before storing each view’s result into its target frame-
buffer. When using a partitioned framebuffer, i.e., a framebuffer
which contains multiple views, we must ensure that triangles are
adequately clipped against the current target region and do not pro-
trude into regions that correspond to a different view. This can be
achieved in several ways: For one, graphics APIs provide methods
for reconfiguring the viewport against which culling and clipping
are performed between draw calls. We indicate that this feature is
being used by CLIPVP. Alternatively, we can avoid this additional
API command and implied synchronization dependencies by defin-
ing custom clip planes (CLIP||) in the vertex shader instead [Wil15].
A third method exploits the discard instruction in the fragment
shader (CLIPFS) to achieve correct clipping [DNS10]. In addition to
purely functional clipping, we also consider the impacts of perform-
ing fine-grained view frustum culling and backface culling in the
geometry shader to reduce its output, which we denote with the
symbols VFCGS and BFCGS, respectively. If multiple methods are used
in the same pipeline, they are concatenated by the | symbol.

3.4. Framebuffer Layout

There are several possible choices w.r.t. the layout for storing the
collective results generated for all N processed views. In our cases,
we consider all framebuffer objects to contain at least one depth
buffer and an arbitrary number of colour targets. In the simplest case,
N separate framebuffer objects and associated textures are allocated
and each one is bound directly before rendering a particular view. We
indicate this layout with the ... symbol, which is also used to de-
scribe the simple pipeline setup in Figure 1a. Note that this layout is
extremely restrictive, as it implies that no API- or hardware-backed
geometry amplification can be used, since framebuffer bindings
cannot be changed while a graphics pipeline runs. Consequently, a
common suggestion in previous work is to use a single large frame-

buffer object instead of multiple smaller ones, and specifying the
target write window for each individual view [DNS10, Wil15]. We
use the ... symbol to represent such a pipeline configuration. Since

... pipeline configurations eventually contain multiple view-results
in one single framebuffer, one of the clipping methods described in
Chapter 3.3 is indispensable for producing correct results. A third
option for the framebuffer layout is to exploit layered rendering ca-
pabilities to write each view’s content to a separate layer of an array
texture [Mar09]. When an array texture is part of the framebuffer
object, the rasterizer is executed in a special mode that allows setting
the built-in layer ID that each primitive is assigned to. A layered
framebuffer is indicated by the ... symbol.

We have already noted in Chapter 3.1 that there are cases where
we would like to partition the rendering of N views into chunks of,
e.g., four views each and, as a consequence, issue

⌈N
4
⌉

draw calls
per scene entity to produce the entirety of N view results. For such
variants, we are using either multiple separate framebuffer objects
of the principal ... type, or multiple separate framebuffer objects of
the principal ... type. To indicate a set of conjugate ... framebuffer
objects, we use the ... symbol. To indicate a set of conjugate ...

framebuffer objects, we use the ... symbol.

4. Evaluation

In order to thoroughly evaluate and identify the conditions that in-
fluence an MVR technique’s performance, we have collected timing
results for several scenes, GPU models and setup configurations in
three different applications. Specifically, we have evaluated more
than 50 MVR variants in the context of ID buffer rendering for PVS
computation, G-buffer generation for lightfields and shadow map-
ping (see Figure 2). For rendering a single ID buffer, we use multiple
viewpoints on the surface of a rectangle to sample the scene visibil-
ity. For the lightfield G-buffer, we use the same sample positions as
for ID buffer rendering but set multiple colour targets to store all
fragment shader outputs. With shadow mapping, the discrepancy

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

(a) Rendering 4 ID buffer / G-buffer views (b) Rendering 4 shadow map views

Figure 2: Different configurations for a single 4-view setup in our applications. (a) To generate ID buffers for a PVS, we sample a rectangle to
obtain visibility information under small camera motion as done, e.g., by [MVD∗18]. The same samples can be used for generating a G-buffer
for a small lightfield. (b) For shadow maps, samples are arbitrarily distributed, since light source positions are generally independent.

between viewpoints in MVR is random, since the positions of light
sources in a scene are mostly independent. We evaluate our MVR
applications at up to 100 PVS/light source origins and orientations
which are uniformly distributed in each scene. Each application’s
run time is recorded for a varying number of target views in 6 scenes
listed in Table 1. In contrast to most previous work, our evaluation
also considers large MVR setups and ranges from 2 to 32 simultane-
ous target views. We consider two common framebuffer resolutions
for LQ/HQ purposes: 800×600 and 1080p.

For our evaluation, we have implemented a testbed that enables
users to quickly define and run a wide range of MVR techniques.
We have chosen to use OpenGL 4.6 over Vulkan as the target ren-
dering API, for two reasons: first, since Vulkan has not yet fully
penetrated the industry, results obtained with OpenGL better re-
flect the expected impact in current graphics applications. Second,
several helpful tools that allow for in-depth analysis (such as the
Nsight Graphics range profiler) are currently incompatible with the
Vulkan API [NVI20]. Furthermore, given that our test applications
do not show high CPU workload or rely on complex input resource
management, we expect deviations to be minor. We have recorded
our results for the following GPUs: NVIDIA’s GTX 980, GTX 1060,
GTX 1650 SUPER, RTX 2080, RTX 2800 Ti and AMD’s RX 580.
Scenes undergo CPU-side frustum culling and have backface culling
enabled in the rendering API. While we performed the measure-
ments on different machines, our timings record only the portion of
the GPU-side frame time required for rendering all N views. Before
timing, we ran a warmup phase of 15 frames. For a single measure-

Table 1: Scenes used to generate test results, along with geometry
properties and the usual range of draw calls needed to produce one
view of each scene. Due to frustum culling, the number of draw calls
varies depending on the active view and pipeline configuration.

#vertices #triangles avg. #drawcalls
Bistro 2.52M 2.83M 43–71
Gallery 0.65M 1.00M 29–48
Robot Lab 0.38M 0.47M 46–111
San Miguel 9.02M 9.98M 866–1446
Sponza 0.29M 0.44M 84–137
Viking Village 2.87M 4.26M 195–384

ment, we uploaded the required resources to the GPU, waited for
completion of previous commands, and recorded the multi-view ren-
dering time using GPU timer queries. For evaluation, we consider
the average frame times across all measurements per configuration.
Due to the vast size of the parameter space for this problem, we
must restrict our evaluation to cases that are of particular interest. In
the following, we first identify a subset of most robust techniques
out of the possible combinations that result from the parameters in
Section 3. We consider ID buffer rendering as our base use case,
since it requires minimal effort w.r.t. to vertex and fragment shad-
ing (i.e., it generates a single integer output) and should enable
hardware-accelerated techniques to achieve peak performance due
to the strong correlation of visible geometry between views [BS18].
This subset of techniques is then further refined to yield the most
promising ones, for which we analyze trends and explore the impact
of changing load parameters by applying them to G-buffer rendering
(three vector-valued outputs) and shadow mapping (depth-only).

4.1. Identifying Robust MVR Techniques

For the sake of brevity, we do not include results for all techniques
that were part of our initial experiments. Instead, we provide a com-
parison of techniques that are based on previous work, as well as
hardware-accelerated variants and promising combinations of API
features that have not been proposed before. In order to identify the
top-performing pipeline variants per category (where the categories
are described in Sections 4.1.1 to 4.1.3), we compare them to the
simplest possible MVR baseline: P(N, , ...), which describes
a pipeline that requires N pipeline invocations, performs simple
geometry forwarding, and renders the results into separate frame-
buffer objects. A technique is considered robust on a given GPU if
it performs faster than our baseline in at least 50% of all ID buffer
rendering setups, which include different scenes, view counts and
framebuffer resolutions. Note that we skip this comparison for the
AMD RX580 entirely; no MVR technique performed significantly
better than P(N, , ...).

4.1.1. Instanced Rendering

Based on the method proposed by Wilson [Wil15],
P(1, , ... ,CLIP||) describes an MVR pipeline which uses a
single pass and instanced rendering for geometry amplification,
forwarding the output to a large, partitioned framebuffer. To avoid

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

GTX 980

GTX 1060

GTX 1650 S.

RTX 2080

RTX 2080 Ti
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P(1, , ... ,CLIP||) P(1, , ...) P(
⌈N

4
⌉
, , ...)

Figure 3: Bars represent the percentage of configurations where
a particular instanced rendering variant showed noticeably better
performance than P(N, , ...) did for the same configuration.

writing outside each view’s bounds, custom vertex clip planes are
used, which allows skipping the geometry shader stage altogether.
While testing this approach in our setup, we found that its overall
performance can be improved by using a layered framebuffer
instead of a partitioned one. Note that in this case, we must set
the layer ID for each primitive, which theoretically requires the
presence of a geometry shader. However, for such constant-time
efforts, modern NVIDIA GPUs support pass-through geometry
shaders, which almost completely avoid the overhead caused by
this stage. The P(1, , ...) variant employs this particular setup
and consistently outperforms the original version on all tested
NVIDIA GPUs—in most cases even by a large margin. We further
found that the performance of this approach can be improved
by restricting the number of views that are rendered at the same
time. Our empirical tests have shown that limiting the number of
simultaneously processed views to 4 works best, which will be
a recurring theme in the following sections. An interpretation of
this trend will be provided in Section 5. The resulting instanced
rendering-based pipeline variant is described with the symbol
P(

⌈N
4
⌉
, , ...) and shows the most favourable ratio across the

pipeline variants considered in this section when compared to our
baseline (see Figure 3). Since none of these variants performed
better than our baseline on weaker GPU models for 4 or more
views, they are excluded from our detailed analysis in this paper.
Corresponding results can be found in our supplemental material.

4.1.2. Geometry Shader-Based Techniques

Like Wilson’s approach, the approach by Sorbier et al. [DNS10]
targets a single, partitioned framebuffer and uses a single invocation
to produce N views. However, their geometry amplification occurs
in a geometry shader loop. The geometry shader further applies
frustum culling to reduce the input to the rasterizer and performs
clipping in the fragment shader to restrict rendering to each view’s
framebuffer region. Their pipeline variant can thus be denoted by
P(1, , ... ,VFCGS|CLIPFS). Once again, restricting the number of
simultaneous views provides a significant performance boost. We
further saw that switching the large framebuffers for layered ones
yields overall better performance. This is partly due to the fact that
the fragment shader stage must no longer perform discard op-

GTX 980

GTX 1060

GTX 1650 S.

RTX 2080

RTX 2080 Ti
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P(1, , ... ,VFCGS|CLIPFS) P(
⌈N

4
⌉
, , ... ,VFCGS|CLIPFS)

P(
⌈N

4
⌉
, , ... ,VFCGS) P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS)

Figure 4: Percentages of tests where each geometry shader-based
variant showed performance improvements over our baseline.

erations to achieve clipping and can take advantage of early depth
testing. However, we also found that keeping the frustum culling
routine in the geometry shader is beneficial; since the geometry
shader is executed in a loop, testing each triangle against a frus-
tum incurs only a small overhead which can be amortized by the
reduced output of the geometry shader. We denote this pipeline as
P(

⌈N
4
⌉
, , ... ,VFCGS). To further relieve the rasterization stage,

we have added backface culling to the geometry shader routine,
which led to a relative speedup in more than 60% of all cases. The
advantageousness of choosing either loop-based variant over our
baseline is outlined by the plots in Figure 4.

Instead of a simple geometry shader loop, we also consider meth-
ods based on fixed geometry shader instancing. This type of geom-
etry amplification can be achieved by defining a fixed number of
geometry shader invocations, which is part of OpenGL’s core func-
tionality since version 4.0. While previous literature does not men-
tion any comparable variants, we found this amplification method to
work particularly well on NVIDIA GPUs in our use case. Similar to
the loop-based pipelines, we have tested combinations with custom
frustum and backface culling routines in the geometry shader. On
average, we found that the most effective techniques include both of
these traits and target layered framebuffers. Based on previous im-
pressions, we also constrained the number of views rendered per in-
vocation down to 4, resulting in an appreciable performance increase.
The percentages of cases where these variants outperform our multi-
pass baseline are plotted in Figure 5. Of all MVR variants that do
not rely on hardware acceleration, P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS)

performed best across all tested NVIDIA GPU models.

4.1.3. OVR and Hardware-Acceleration

The OVR extension allows defining multiple target views for which
vertex shader outputs can be written. On NVIDIA Pascal and Tur-
ing architectures, choosing 2 or 4 target views respectively allows
the extension to exploit the underlying MVR hardware features for
maximal efficiency. If more views are defined than the hardware
supports, a slower fallback mechanism will be triggered instead.
Hence, restricting the number of simultaneous views may again be
beneficial to performance in this particular geometry amplification

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

GTX 980

GTX 1060

GTX 1650 S.

RTX 2080

RTX 2080 Ti
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P(1, , ...) P(1, , ... ,VFCGS)

P(
⌈N

4
⌉
, , ... ,VFCGS) P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS)

Figure 5: Percentage of cases where a geometry shader-instancing
variant showed better average performance than P(N, , ...).

mode. For instance, P(
⌈N

4
⌉
, , ...) describes a variant of MVR

that partitions the N views into chunks of four views each and is thus
accelerated on Turing. OVR may only be used with array textures
and may not be combined with tessellation or geometry shading,
which fairly limits the amount of OVR-based MVR pipeline variants.
The relative speedup of OVR-based methods over our multi-pass
baseline is significant on all NVIDIA GPUs, including models that
do not offer MVR hardware support. On older microarchitectures,
P(

⌈N
2
⌉
, , ...) performs better in at least 50% of our tests. Tur-

ing GPUs can exploit acceleration for P(
⌈N

4
⌉
, , ...), which has

a bigger impact in our assessment since most of our configurations
render >4 views. On recent models, both hardware-accelerated vari-
ants clearly outperform our baseline in >90% of all test cases. This
is confirmed by the information plotted in Figure 6.

4.2. Exploring MVR Setup Parameters and Analysis

We provide a detailed analysis of how setup parameters affect
performance of the most promising MVR methods, based on
our initial ID buffer evaluation: P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS),

P(
⌈N

4
⌉
, , ... ,VFCGS|BFCGS) and OVR-based methods. Tables 2

and 4 list the run time results for selected, representative setups. For
the full list of timings, please refer to our supplemental material.

4.2.1. Impact of Scene Size

In the results from the NVIDIA models, we could observe that
some pipelines are better suited to particular scenes than to others.
For the larger scenes ("Bistro", "San Miguel", and "Viking Vil-
lage"), geometry shader-based pipelines outperform other pipeline
variants on Maxwell and Pascal in all test cases and stay within
a 20% performance margin to OVR-based techniques on Turing
in most cases. P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS) turns out to be one

of the top-performing techniques in all configurations for the ID
buffer tests. Only on high-end Turing GPUs, P(

⌈N
4
⌉
, , ...) is

often showing significantly better performance. (compare with Ta-
ble 2). For the remaining, smaller scenes, performance generally
varies less across different pipelines. The overall picture shows rel-
ative performance gains in favour of OVR-based techniques and
our baseline P(N, , ...), compared to geometry shader-based

GTX 980

GTX 1060

GTX 1650 S.

RTX 2080

RTX 2080 Ti
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P(1, , ...) P(
⌈N

2
⌉
, , ...) P(

⌈N
4
⌉
, , ...)

Figure 6: Bars represent the percentage of configurations where a
OVR variant showed better performance than P(N, , ...).

techniques. OVR-based techniques exhibit good performance across
all test scenes, but geometry shader-based techniques stay within a
performance margin of 20% even on the 2080 Ti in the majority of
test cases. While P(N, , ...) falls behind OVR-based techniques
in most cases on NVIDIA GPUs, it is the fastest technique on the
AMD RX 580 in 100% of tests for the small and large scenes alike.

4.2.2. Differences Across GPU Architecture

Geometry shader-based pipelines show consistent performance char-
acteristics across different NVIDIA GPU microarchitectures. A
GPU’s performance tier has more impact on the render times than
the microarchitecture. This effect is less pronounced with techniques
that partition rendering into sets of 4 views (

⌈N
4
⌉
) and becomes ob-

vious for geometry shader-based "all-in-one" techniques of the type
P(1, ...). On low-tier models (i.e. GTX 1060, and GTX 1650 SU-
PER), they performed worse than P(N, , ...) in 73% of all tests.
The optimized pipeline variants of type P(

⌈N
4
⌉
, ...) show better per-

formance across all NVIDIA GPUs, surpassing P(N, , ...) in
virtually all test cases, as can be seen in Table 2.

Since NVIDIA supports the hardware-accelerated creation of up
to four views on Turing, we expected performance gains to reflect
the doubled number of simultaneous views compared to the Pascal
microarchitecture. Indeed, the number of test cases where an OVR
variant outperforms other techniques increases on Turing. How-
ever, the effect is most noticeable on high-tier NVIDIA GPUs. On
the GTX 1650 SUPER, we cannot report an overall preference for
OVR-based techniques, sinceP(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS) shows

better performance in 43% of test cases and roughly equal per-
formance in the others. These relations change drastically with
the high-tier models: P(

⌈N
4
⌉
, , ...) performs better in one

third of all test cases by a large margin (>20%). Comparing
P(

⌈N
4
⌉
, , ...) to P(

⌈N
2
⌉
, , ...), the former showed advan-

tages on the RTX 2080 and RTX 2080 Ti in 49% and 63% of
all tests, respectively. On all other GPUs, the differences between
those two OVR-based variants are marginal. Aside from the advanta-
geous performance of P(

⌈N
4
⌉
, , ...) on high-tier Turing GPUs,

P(
⌈N

4
⌉
, , ... ,VFCGS|BFCGS) seems to be the best choice for other

NVIDIA GPUs across a multitude of different configurations.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

Table 2: Results of ID buffer generation for different resolutions, scenes, and view counts per GPU. Each table cell represents averaged frame
times from 102 measurements per configuration in milliseconds. For brevity, we use the following shorthand to reference our MVR techniques:
M.Pass = P(N, , ...), GSL4 = P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS), GSI4 = P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS) and OVRX = P(

⌈N
X
⌉
, , ...).

AMD RX580 GTX 980 GTX 1060 RTX 2080
Scene #Views M.Pass GSL4 GSI4 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR4

19
20
×

10
80

Bistro
2×2 2.24 4.48 3.65 2.56 1.95 1.74 2.50 2.46 2.50 2.44 2.69 1.11 0.96 0.89 0.88
4×4 8.97 17.88 14.58 10.26 7.81 7.03 9.96 8.96 7.85 7.20 8.90 4.22 3.67 3.46 3.32
8×4 17.84 35.66 29.01 20.34 15.60 14.03 19.77 17.89 15.51 14.28 17.65 8.31 7.16 6.65 6.62

San
Miguel

2×2 5.34 9.74 6.95 6.21 3.87 3.21 5.27 5.40 3.75 3.30 4.83 3.21 2.07 1.87 1.68
4×4 21.66 38.58 27.25 27.90 15.61 13.15 22.03 26.12 15.20 13.64 20.14 16.36 7.03 6.25 6.09
8×4 43.17 76.76 54.03 57.80 31.33 26.37 44.20 54.09 30.50 27.04 40.81 34.39 14.59 13.13 12.6

Sponza
2×2 0.72 1.89 1.79 0.78 0.65 0.63 0.61 0.87 1.16 1.01 0.95 0.48 0.35 0.37 0.34
4×4 2.99 7.64 7.21 3.21 2.68 2.58 2.54 3.03 3.03 2.97 3.08 1.83 1.41 1.37 1.32
8×4 6.02 15.28 14.40 6.57 5.38 5.17 5.03 5.97 5.15 5.01 4.91 3.45 2.89 2.91 2.77

Viking
Village

2×2 2.62 4.17 3.40 2.94 2.04 1.78 2.82 2.57 2.11 2.13 2.68 1.75 1.06 0.88 0.96
4×4 10.41 16.77 13.54 12.47 8.07 7.14 11.57 11.04 7.78 7.24 10.38 5.97 3.82 3.48 3.55
8×4 20.65 33.34 27.17 25.24 16.16 14.33 22.99 22.75 15.77 14.63 20.89 12.06 7.69 7.17 7.32

4.2.3. Varying Number of Views

A very consistent observation across our test results is the domi-
nance of OVR-based techniques for stereo rendering on the Turing
microarchitecture. This comes as no surprise, since stereo rendering
is the declared purpose of NVIDIAs hardware MVR support. No
other pipeline variant was able to outperform P(

⌈N
4
⌉
, , ...) on

the RTX 2080 and the RTX 2080 Ti in any of our test cases. On the
GTX 1650 SUPER and on the GTX 1060, OVR-based techniques
still performed very well in all test cases with two views. For four or
more views, geometry shader-based pipeline variants start to show
competitive performance characteristics. For 16 and 32 views, they
stay within a 10% performance margin to OVR-baesd techniques
in most test cases, and often outperform them on pre-Turing mi-
croarchitectures. Due to the consistent performance characteristics
for P(

⌈N
4
⌉
, ...) MVR techniques with four or more views, we argue

that they scale comparably well with the number of simultaneously
rendered viewpoints. On the AMD RX580, P(N, , ...) again
yields the best performance for all view counts (see Table 2).

4.2.4. Raising Vertex & Fragment Load

To establish performance trends of applications with higher vertex
load—e.g., vertex skinning—we have simulated highly expensive
vertex stages by adding a loop that performs 15k fused multiply-
add instructions to the shader. Techniques which amplify geometry
before the geometry shader stages are impacted more severely by in-
creased vertex load. Amplifying geometry in the geometry shader po-
tentially saves up to N−1 expensive vertex shader invocations. Com-
paring P(

⌈N
4
⌉
, ...)-type pipelines to P(1, ...)-types, the former in-

voke the vertex shader more often, which is reflected in our measure-
ments: While P(

⌈N
4
⌉
, ...)-types outperform P(1, ...)-types in 100%

of test cases with light vertex load by a huge margin, the latter show
better performance than the former for many tests with high vertex
load across NVIDIA GPUs. OVR-based techniques are coping well
with high vertex load on Turing: On the GTX 1650 SUPER, they
outperform all other techniques in 100% of tests. On the RTX 2080

Ti, OVR-based techniques perform worse than P(1, , ... ,VFCGS)
in 50% of test cases, the same percentage where P(1, , ... ,VFCGS)
outperforms P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS). On Maxwell and Pas-

cal, the top-performing techniques are P(1, , ... ,VFCGS) and
P(1, , ... ,VFCGS). For increased fragment load, we use the results
obtained from our G-buffer rendering application (see Table 3). Here,
geometry shader-based techniques lose performance compared to
OVR-based techniques and—especially on low tier GPUs—also to
P(N, , ...). While OVR-based techniques also showed good per-
formance characteristics with light fragment load, they show a clear
lead with increased fragment load by the means of G-buffer render-
ing: Their performance is better than the otherwise well-performing
geometry shader-based techniques in 40% of test cases on Maxwell
and in up to 90% of test cases on Pascal and Turing. However, the
advantage is substantial (>20%) only on high-end Turing GPUs.

4.2.5. Influence of Viewpoint Discrepancy

The fundamental difference between our ID buffer/G-buffer tests
and our shadow mapping is the scene setup w.r.t. the view frusta.
While for ID buffer tests, view frusta have strong coherence, for
shadow mapping, the view frusta might not overlap at all (see Figure
2). The resulting performance measurements for shadow mapping (a
selection of which is provided in Table 4) draw a highly interesting—
and consistent—picture: P(N, , ...) outperforms OVR-based
techniques in the majority of test cases on all NVIDIA GPUs. For
all non-high-tier Turing GPUs, we can even observe more than
40% faster frame times in at least half of all test cases (varying per
GPU). On high-tier Turing, the performance differences are a bit
less pronounced but still substantial (>20% faster in half of all test
cases on the RTX 2080 Ti) Geometry shader-based techniques are
not doing better with shadow mapping tests. We observed similar
relations to P(N, , ...) as with OVR-based techniques. While
OVR-based techniques generally show slightly better performance
than geometry shader-based techniques, they stay within a 20%
margin on most GPUs except for the GTX 1060.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

Table 3: Results of G-buffer generation for different resolutions, scenes, and view counts per GPU. Each table cell represents averaged frame
times from 60 measurements per configuration in milliseconds. For brevity, we use the following shorthand to reference our MVR techniques:
M.Pass = P(N, , ...), GSL4 = P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS), GSI4 = P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS) and OVRX = P(

⌈N
X
⌉
, , ...).

AMD RX580 GTX 980 GTX 1060 RTX 2080
Scene #Views M.Pass GSL4 GSI4 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR4

19
20
×

10
80

Bistro
2×2 2.76 5.07 4.35 2.40 2.22 2.15 2.27 2.54 3.07 2.88 2.65 1.57 1.39 1.42 1.33
4×4 11.07 20.31 17.40 9.46 8.99 8.61 9.04 8.33 8.96 8.90 8.22 5.74 4.95 4.93 4.76
8×4 22.06 40.44 34.73 18.92 17.90 17.20 18.00 17.03 17.98 17.94 16.60 10.80 9.76 9.59 9.49

San
Miguel

2×2 6.64 23.03 15.39 7.43 7.02 5.82 6.67 6.59 7.15 6.70 6.08 3.97 3.97 3.72 3.19
4×4 26.28 91.60 61.07 31.06 28.08 23.23 26.73 28.50 28.41 26.49 24.15 17.67 12.39 11.29 9.47
8×4 52.78 182.8 121.68 62.36 55.83 46.11 53.33 57.48 56.14 52.22 48.26 35.97 24.56 22.46 18.84

Sponza
2×2 1.89 3.32 3.09 1.55 1.50 1.40 1.35 1.73 1.86 2.49 2.17 1.09 1.03 1.08 1.03
4×4 7.61 13.38 12.44 6.35 5.78 5.70 5.54 5.76 5.51 5.48 5.11 4.20 3.70 3.71 3.72
8×4 15.22 26.63 24.77 12.91 11.60 11.27 10.98 12.07 11.18 11.11 10.49 8.93 7.38 7.42 7.22

Viking
Village

2×2 3.82 10.95 7.84 4.22 3.90 3.40 3.94 3.62 4.06 3.91 3.73 1.97 1.97 2.01 1.96
4×4 15.08 43.37 31.40 17.25 15.54 13.71 15.61 15.00 16.20 15.72 14.11 9.01 7.32 6.95 6.11
8×4 29.98 86.69 62.71 34.65 31.23 27.40 31.13 30.79 32.21 31.35 28.30 17.22 14.62 13.63 12.25

These performance relations are in stark contrast to the results
from ID buffer generation, where P(N, , ...) shows worse per-
formance than both, OVR-based techniques and geometry shader-
based techniques across all NVIDIA GPUs—especially on high-tier
models. It appears that NVIDIA GPUs can take advantage of cases
where geometry is visible in multiple views that are rendered with
the same draw call. With views that do not share geometry, this ad-
vantage vanishes, leading to worse performance than P(N, , ...).
A tentative explanation for this phenomenon is given in Section 5.

5. Discussion

While some of the results in Section 4 turned out as expected—e.g.,
OVR’s stereo rendering performance—other results were more sur-
prising: Geometry shader-based pipeline variants of the P(

⌈N
4
⌉
, ...)-

type showed very competitive performance for many test cases
on NVIDIA GPUs. P(N, , ...) remains the overall strongest
technique for our shadow mapping with incoherent view frusta on
NVIDIA models. To provide a deeper understanding of the per-
formance characteristics that we observed for the different MVR
approaches, we used the NVIDIA Nsight Graphics profiler on a
RTX 2080 and analyzed frame captures for test cases that generate
the maximal number of target views in our three applications.

Due to the relatively low load on vertex and fragment shading
throughout all tested applications, streaming multi-processor (SM)
utilization is never a limiting factor. The P(N, , ...) approach is
limited by the viewport culling (VPC) in all three applications, with
raster operations (ROPs) and memory access (VRAM) being high
or close to the physical limit. While G-buffer rendering shows the
highest ROP utilization, no memory operation reached the hardware
limits. The SM utilization caps at 15%, with most load stemming
from vertex shading. Geometry shader-basedP(1, ...)-type pipelines
increase SM utilization: it reaches 30% withP(1, , ... ,VFCGS) and
85% with P(1, , ... ,VFCGS). All other GPU units show low uti-
lization. Most interestingly, VPC is reduced to 15%–30%, which is
owed to culling in the geometry shader. In some instances, we found

a sudden VRAM overload, although the technique should in theory
reduce VRAM access the most. We attribute this effect to tempo-
rary scheduling/memory management issues after geometry shading,
which may lead to L2 cache thrashing or to overflow of internal
work queues. We only observed this issue in some test cases, and
only with 32 views being generated. As this issue rarely arises, the
general low performance of geometry shader-based P(1, ...)-types
cannot be attributed to this effect. We believe the main issue is a
typical geometry shader problem: if many outputs may be generated,
memory management and scheduling become challenging, leaving
all profiled units underutilized.

Geometry shader-based P(
⌈N

4
⌉
, ...)-type methods show an over-

all better balance. Custom culling in the geometry shader reduces
VPC pressure significantly compared to our baseline P(N, , ...).
Also, VRAM is in general significantly lower than with our baseline,
while it is slightly higher than with P(1, ...)-type methods (when it
does not spike VRAM). Geometry shader-based P(

⌈N
4
⌉
, ...)-type

pipeline variants do not show any sudden VRAM spikes and SM
utilization is overall low with 10%-12%. Thus, there is overall no
clear bottleneck and it seems that geometry shader output schedul-
ing or simply missing work load may again be the limiting factor
for these approaches. In contrast to shadow mapping, the geometry
shader output is more coherent in ID buffer and G-buffer test cases,
as most often triangles are either culled for all four views or emitted
four times. VPC load caps at about 40% to 50%. Shadow mapping
on the other hand typically emits one or two triangles, which makes
scheduling a lot harder and thus leads to lower performance in this
application. Also, VPC pressure remains higher for shadow map-
ping (up to 75%). However, when able to exploit geometry reuse,
P(

⌈N
4
⌉
, ...)-type methods find a sweet spot as they reduce the load

on the P(N, , ...) bottleneck and do not lead to too complicated
scheduling/memory management issues for the hardware scheduler.

P(
⌈N

4
⌉
, , ...) shows the highest load on VPC of all tested

methods in all test cases (90-100%) All other components see little
load, recording the lowest load on everything but SM at 14%-17%.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

Table 4: Results of LQ shadow mapping for different resolutions, scenes, and view counts per GPU. Each table cell represents averaged frame
times from 30 measurements per configuration in milliseconds. For brevity, we use the following shorthand to reference our MVR techniques:
M.Pass = P(N, , ...), GSL4 = P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS), GSI4 = P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS) and OVRX = P(

⌈N
X
⌉
, , ...).

AMD RX580 GTX 980 GTX 1060 RTX 2080
Scene #Views M.Pass GSL4 GSI4 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR4

80
0
×

60
0

Bistro
4 1.18 2.15 3.98 1.37 2.54 2.44 2.45 1.35 3.01 3.02 2.34 0.50 0.98 1.11 1.27

16 6.00 11.95 22.47 6.30 11.36 11.44 11.60 5.31 11.77 11.73 8.96 2.42 4.45 5.60 5.32
32 12.18 23.96 43.17 12.65 21.54 21.54 21.65 9.84 22.05 22.37 16.68 4.61 8.42 8.08 10.61

San
Miguel

4 3.23 7.83 13.64 3.39 5.97 5.85 6.41 2.93 5.98 6.08 4.75 4.05 3.12 3.47 4.60
16 13.39 34.23 61.54 14.95 26.62 26.88 26.58 13.19 27.19 27.54 21.73 11.49 9.66 11.49 12.29
32 25.78 66.07 118.65 30.41 51.61 51.90 51.97 27.77 52.95 53.92 40.45 11.49 9.66 11.49 12.29

Sponza
4 0.46 0.76 1.12 0.35 0.56 0.57 0.62 0.35 0.64 0.66 0.52 0.17 0.22 0.24 0.24

16 1.58 3.19 4.64 1.33 2.23 2.28 2.17 1.45 2.75 2.86 2.05 0.73 0.95 1.03 1.03
32 2.59 5.70 8.22 2.62 4.28 4.43 4.05 2.63 5.03 5.12 3.66 1.43 2.02 2.32 1.86

Viking
Village

4 3.44 7.38 13.00 3.80 5.86 5.82 6.22 3.36 5.80 5.86 4.92 1.97 2.25 2.44 2.81
16 7.53 14.04 25.30 7.88 13.42 13.35 14.25 6.38 13.91 14.13 10.99 3.08 4.67 5.09 5.92
32 16.08 30.91 54.57 16.82 28.58 28.35 29.87 13.16 29.15 29.17 22.73 6.40 10.64 10.44 12.07

In the ID buffer and G-buffer applications, P(
⌈N

4
⌉
, , ...) yields

very competitive performance, which we attribute to scheduling
also being efficient, as again culling is very consistent and rasterizer
queue fill rates are similar. For shadow mapping, the performance is
less competitive although the profiling characteristics do not show
a vastly different behavior. Our assumption is that scheduling may
be an issue, again, as culling clogs the pipeline and triangles trickle
into the rasterizer queues of the different views. P(N, , ...) is
also limited by VPC, but generates all load each disjoint view at a
time and thus achieves better scheduling and overall utilization.

Our evaluation results indicate that OVR-based techniques show
clear advantages with stereo rendering, increased vertex and/or
fragment load, and in general on high-tier Turing GPUs. For low
vertex and fragment loads, higher numbers of views, and espe-
cially on previous NVIDIA microarchitectures, we often found
P(

⌈N
4
⌉
, , ... ,VFCGS|BFCGS) to show slightly superior and con-

sistent performance. It also exhibits relatively good performance
with the bigger scenes tested. We recommend this particular pipeline
variant in general for use cases that require geometry or tessella-
tion shaders, which are not supported by OVR-based techniques.
For non-overlapping view frusta and in general for AMD GPUs,
P(N, , ...) shows the best performance across all tests. We found
that overall rendering performance for producing multiple views
can drastically be improved by splitting the workload in packages of
four views at a time, which is utilized by P(

⌈N
4
⌉
, ...)-type variants.

Although requiring
⌈N

4
⌉

times the number of draw calls compared to
P(1, ...)-type variants, they enable better load distribution and bal-
ance as detailed above. Only in combination with very high vertex
load or excessive numbers of draw calls, performance shifts in favour
of P(1, ...)-type pipeline variants. For non-hardware-accelerated
MVR techniques, we can state as a general rule of thumb that per-
forming geometry amplification as late as possible is advantageous,
and that custom frustum and backface culling in geometry shaders
further increases performance. Using layered framebuffers comes
with the advantages that clipping can be performed by the rasterizer
and early depth tests can be utilized.

6. Conclusion and Future Work

In this paper, we have examined a wide range of different techniques
that are available today on modern GPU hardware to achieve multi-
view rendering. In order to facilitate the concise description of
relevant properties, we have introduced a general and extensible
pipeline catalogue. Our evaluation spans multiple GPU generations
and use cases, and provides a basis for making informed decisions
w.r.t. the applicability of different pipelines, as well as the main
factors that impact their performance. In contrast to most available
material on this topic, we go beyond stereoscopic projection and
analyze multi-view setups that target more than two views. We have
shown that, with the help of widely available rendering API features,
we can achieve a performance improvement of 5–6× over earlier
methods that were explicitly recommended for such scenarios.

While we found NVIDIA’s hardware support and the general
OVR extension for multi-view rendering to work well across a wide
range of setups, we also observed that it can be outperformed in
applications with low shading load, particularly on weaker GPU
models. Furthermore, the lack of support for tessellation and geome-
try shading in this feature motivates the question which alternatives
can be used if these pipeline stages are required. For those cases, we
have identified suitable, optimized methods that are usually within
15–20% of the fastest OVR-based techniques.

For future work, we look forward to extending our catalogue
by additional methods that are enabled by the mesh shaders of
NVIDIA’s Turing architecture. Based on the improvements obtained
by the application of custom clipping and culling steps in various
pipelines, we are confident that the enhanced programmability of
the geometry stage can facilitate further performance gains while
preserving the ability to perform custom tessellation and subdivision
steps as part of the rendering pipeline. All techniques are available as
part of our testbed, which we provide for download and further exper-
iments at https://github.com/cg-tuwien/FastMVR.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

https://github.com/cg-tuwien/FastMVR

J. Unterguggenberger et al. / Fast Multi-View Rendering for Real-Time Applications

References

[ABC∗91] ADELSON S. J., BENTLEY J. B., CHONG I. S., HODGES
L. F., WINOGRAD J.: Simultaneous generation of stereoscopic views.
In Computer Graphics Forum (1991), vol. 10, Wiley Online Library,
pp. 3–10. 2

[BS18] BHONDE S., SHANMUGAM M.: Turing multi-view ren-
dering in vrworks. https://devblogs.nvidia.com/
turing-multi-view-rendering-vrworks, 2018. [Accessed
19-February-2020]. 1, 5

[BSF10] BECK S., SCHNEIDER M., FRÖHLICH B.: Multiple view gener-
ation for auto-stereoscopic displays. In Proceedings of the 7th Workshop
of Bauhaus-Universität Weimar on Virtuelle und Erweiterte Realität der
GI-Fachgruppe VR/AR" (2010), pp. 21–23. 2

[Cas18] CASS EVERITT: Oculus virtual reality multi-view ex-
tension. https://www.khronos.org/registry/OpenGL/
extensions/OVR/OVR_multiview.txt, 2018. [Accessed 6-
March-2020]. 1, 2

[Dim07] DIMITROV R.: Cascaded shadow maps. Developer Documenta-
tion, NVIDIA Corporation (2007). 1

[DNS10] DE SORBIER F., NOZICK V., SAITO H.: Gpu-based multi-view
rendering. In CGAT 2010 - Computer Games, Multimedia and Allied
Technology, Proceedings (2010), pp. 273–279. 1, 2, 4, 6

[Eve16] EVERITT C.: Multiview rendering. In ACM SIGGRAPH 2016,
Moving Mobile Graphics - SIGGRAPH 2016 Course (2016). 1

[Hal98] HALLE M.: Multiple viewpoint rendering. In Proceedings of the
25th annual conference on Computer graphics and interactive techniques
(1998), pp. 243–254. 2

[HAM06] HASSELGREN J., AKENINE-MÖLLER T.: An efficient multi-
view rasterization architecture. In Proceedings of the 17th Eurographics
conference on Rendering Techniques (2006), Eurographics Association,
pp. 61–72. 2

[HSS19a] HLADKY J., SEIDEL H.-P., STEINBERGER M.: The
camera offset space: Real-time potentially visible set computations
for streaming rendering. ACM Trans. Graph. 38, 6 (Nov. 2019).
URL: https://doi.org/10.1145/3355089.3356530, doi:
10.1145/3355089.3356530. 2

[HSS19b] HLADKY J., SEIDEL H.-P., STEINBERGER M.: Tessellated
shading streaming. In Computer Graphics Forum (2019), vol. 38, Wiley
Online Library, pp. 171–182. 2

[KKSS18] KENZEL M., KERBL B., SCHMALSTIEG D., STEINBERGER
M.: A high-performance software graphics pipeline architecture for the
gpu. ACM Trans. Graph. 37, 4 (Nov. 2018). doi:10.1145/3197517.
3201374. 2

[Mar09] MARBACH J.: Gpu acceleration of stereoscopic and multi-view
rendering for virtual reality applications. In Proceedings of the 16th
ACM Symposium on Virtual Reality Software and Technology (New
York, NY, USA, 2009), VRST ’09, Association for Computing Machin-
ery, p. 103–110. URL: https://doi.org/10.1145/1643928.
1643953, doi:10.1145/1643928.1643953. 2, 4

[MVD∗18] MUELLER J. H., VOGLREITER P., DOKTER M., NEFF T.,
MAKAR M., STEINBERGER M., SCHMALSTIEG D.: Shading atlas
streaming. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–16. 1,
2, 5

[MWH18] MARRS A., WATSON B., HEALEY C.: View-warped multi-
view soft shadows for local area lights. Journal of Computer Graphics
Techniques (JCGT) 7, 3 (July 2018), 1–28. 2

[NVI16] NVIDIA CORPORATION: Nvidia geforce gtx 1080. 3

[NVI18a] NVIDIA CORPORATION: Nvidia turing gpu architecture. 2, 3

[NVI18b] NVIDIA CORPORATION: Vrworks - multi-view ren-
dering (mvr). https://developer.nvidia.com/vrworks/
graphics/multiview, 2018. [Accessed 19-February-2020]. 1, 2, 3

[NVI20] NVIDIA CORPORATION: Nsight graphics user guide. https:
//docs.nvidia.com/nsight-graphics/UserGuide, 2020.
[Accessed 6-March-2020]. 5

[RKLC∗11] RAGAN-KELLEY J., LEHTINEN J., CHEN J., DOGGETT
M., DURAND F.: Decoupled sampling for graphics pipelines. ACM
Transactions on Graphics (TOG) 30, 3 (2011), 1–17. 2

[RP94] REGAN M., POSE R.: Priority rendering with a virtual reality ad-
dress recalculation pipeline. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques (1994), pp. 155–162. 2

[SaLY∗08] SITTHI-AMORN P., LAWRENCE J., YANG L., SANDER P. V.,
NEHAB D.: An improved shading cache for modern gpus. In Proceedings
of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware (2008), pp. 95–101. 2

[SS96] SCHAUFLER G., STÜRZLINGER W.: A three dimensional image
cache for virtual reality. In Computer Graphics Forum (1996), vol. 15,
Wiley Online Library, pp. 227–235. 2

[Val03] VALVE CORPORATION: Steam store. https://store.
steampowered.com, 2003. [Accessed 26-February-2020]. 1

[Vla15] VLACHOS A.: Advanced vr rendering. In Game Developers
Conference (2015), vol. 1. 2

[Vla16] VLACHOS A.: Advanced vr rendering performance. In Game
Developers Conference (2016), vol. 2016. 1

[Wil15] WILSON T.: High performance stereo rendering for vr. In San
Diego Virtual Reality Meetup (2015), vol. 2015, January 20. 1, 2, 4, 5

[Wil16] WILLEMS S.: Gpu hardware info database. http://gpuinfo.
org, 2016. [Accessed 6-March-2020]. 1, 3

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

https://devblogs.nvidia.com/turing-multi-view-rendering-vrworks
https://devblogs.nvidia.com/turing-multi-view-rendering-vrworks
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview.txt
https://doi.org/10.1145/3355089.3356530
https://doi.org/10.1145/3355089.3356530
https://doi.org/10.1145/3355089.3356530
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/1643928.1643953
https://doi.org/10.1145/1643928.1643953
https://doi.org/10.1145/1643928.1643953
https://developer.nvidia.com/vrworks/graphics/multiview
https://developer.nvidia.com/vrworks/graphics/multiview
https://docs.nvidia.com/nsight-graphics/UserGuide
https://docs.nvidia.com/nsight-graphics/UserGuide
https://store.steampowered.com
https://store.steampowered.com
http://gpuinfo.org
http://gpuinfo.org

