
E�ective Static Bin Pa�erns for Sort-Middle Rendering
Bernhard Kerbl

Graz University of Technology
kerbl@icg.tugraz.at

Michael Kenzel
Graz University of Technology

kenzel@icg.tugraz.at

Dieter Schmalstieg
Graz University of Technology

schmalstieg@icg.tugraz.at

Markus Steinberger
Graz University of Technology

steinberger@icg.tugraz.at

ABSTRACT
To e�ectively utilize an ever increasing number of processors dur-
ing parallel rendering, hardware and so�ware designers rely on
sophisticated load balancing strategies. While dynamic load balanc-
ing is a powerful solution, it requires complex work distribution
and synchronization mechanisms. Graphics hardware manufactur-
ers have opted to employ static load balancing strategies instead.
Speci�cally, triangle data is distributed to processors based on its
overlap with screenspace tiles arranged in a �xed pa�ern. While
the current strategy of using simple pa�erns for a small number of
fast rasterizers achieves formidable performance, it is questionable
how this approach will scale as the number of processors increases
further. To address this issue, we analyze real-world rendering
workloads, derive requirements for e�ective pa�erns, and present
ten di�erent pa�ern design strategies based on these requirements.
In addition to a theoretical evaluation of these design strategies, we
compare the performance of select pa�erns in a parallel sort-middle
so�ware rendering pipeline on an extensive set of triangle data
captured from eight recent video games. As a result, we are able to
identify a set of pa�erns that scale well and exhibit signi�cantly
improved performance over naı̈ve approaches.

CCS CONCEPTS
•Computing methodologies →Rasterization; Massively paral-
lel algorithms;

KEYWORDS
Static load balancing, Pa�ern, Parallel Rendering, Sort-middle, GPU

ACM Reference format:
Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg, and Markus Stein-
berger. 2017. E�ective Static Bin Pa�erns for Sort-Middle Rendering. In
Proceedings of HPG ’17, Los Angeles, CA, USA, July 28-30, 2017, 10 pages.
DOI: 10.1145/3105762.3105777

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
HPG ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5101-0/17/07. . . $15.00
DOI: 10.1145/3105762.3105777

1 INTRODUCTION
�e key to coping with the massive computational demands of
rendering large 3D scenes in real time lies in parallelization. To
provide the necessary compute power, a modern graphics process-
ing unit (GPU) features thousands of cores. However, to channel all
this power into competitive performance, e�ective load balancing
is needed to make sure all cores are best utilized at all times.

In general, load balancing methods can be categorized as be-
ing either static or dynamic. Static load balancing distributes the
workload following a �xed, prede�ned scheme solely based on the
properties of each individual input element. In contrast, dynamic
load balancing can take into account the current state of the GPU
which includes, e.g., the load on each individual processor. �is
increases the scope of possible optimization strategies at the cost
of higher conceptual complexity and communication overhead.

Work distribution strategies for parallel rendering have been
classi�ed by Molnar et al. (1994) based on where in the pipeline
redistribution between processors occurs: before geometry pro-
cessing (sort-�rst), between geometry and fragment processing
(sort-middle), or a�er fragment processing (sort-last). In a sort-
middle approach, the screen is subdivided into bins. Primitives are
sorted into the bins they cover. Each bin is then assigned system
resources to take on the rasterization of the contents of the bin.

Sort-middle seems to be the preferred strategy on modern de-
vices as the screen coverage of primitives is readily available a�er
geometry processing and the transfer overhead is relatively small
before they are split into large numbers of fragments. Rasteriza-
tion typically uses a coarse-to-�ne strategy and is implemented on
special-purpose hardware units called rasterizers. �e assignment
of bins to rasterizers commonly follows a �xed pa�ern. Such a static
load balancing pa�ern seems logical, given that it grants processors
exclusive access to the frame bu�er in the assigned region, which
eliminates the problem of resource contention and has positive
e�ects on cache performance.

Obviously, the design of a binning pa�ern can have a signi�cant
impact on performance. If the distribution of fragments is not su�-
ciently uniform across screen space, the resulting imbalances will
lead to bo�lenecks on individual rasterizers. If we reject the option
of dynamic load balancing because of its heightened hardware re-
quirements, a good static binning pa�ern is imperative to achieve
high performance on modern processors. Furthermore, as the trend
of increasing processor counts continues, the scalability of binning
pa�erns may be of crucial importance for future hardware designs.
�us, we found it surprising that detailed advice on pa�erns with
good load balancing characteristics is scarce in the literature. With

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA B. Kerbl et al.

screen resolutions reaching 4K or even 8K and parallel rendering
ranging from smart phones to desktop systems and even into the
cloud, load balancing strategies become increasingly important.

Static binning pa�erns must be scalable with respect to bin size,
number of rasterizers, and screen size. In this paper, we investigate
these issues in detail and make the following contributions:

(1) We determine and analyze the pa�erns employed on the
GPU throughout recent years.

(2) We analyze real-world rendering workloads from recent
video games and derive requirements for e�ective pa�erns.

(3) We present ten di�erent pa�ern design strategies based on
these requirements and previous work.

(4) We assess and compare the load balancing characteristics
of the proposed pa�erns on more than 200 game scenes.

(5) We evaluate the e�ects of the most promising pa�erns on
performance in a simulated GPU rendering pipeline.

2 RELATEDWORK
In addition to its application in hardware rasterization, subdividing
the viewport into spatial bins or tiles has become common practice
in the pursuit of high-performance so�ware rendering (Clarberg
et al. 2013; Molnar et al. 1992; Patney et al. 2015; Seiler et al. 2008).
However, previous approaches were usually not bound by the con-
straints of a streaming pipeline architecture (i.e., enforcing a fully
static bin assignment) and therefore opted for using dynamic load
balancing instead (Fuchs et al. 1989; Lin et al. 2001). A notable exam-
ple for fully-programmable rasterization is presented by Laine and
Karras (2011), who demonstrated a complete and parallel so�ware
rendering pipeline with tiled rasterization. However, in contrast
to a streaming pipeline, their design implies that distribution of
clip-space triangle load is known before rasterization, allowing
them to perform semi-dynamic load balancing based on bin loads.

Our work assumes a fully-featured streaming pipeline, similar
to contemporary hardware rasterization. �us, we seek to analyze
and address impacts and e�ects of various bin layouts that may be
used to target optimal static workload distribution.

2.1 Bin arrangement and size
Previously suggested pa�erns for subdividing the screen space for
parallel processing include using scanlines, horizontal and vertical
strips or rectangular tiles (Wang et al. 2011). Juliachs et al. (2007)
shu�e 2D portions of the viewport and distribute them to available
rasterizers randomly. Eldridge (2001) illustrates a tiling pa�ern
for interleaved tile quads in the renowned Pomegranate architec-
ture (Eldridge et al. 2000). However, the authors neither elaborate
on how this pa�ern is produced, nor how its performance would
be a�ected by scaling the tile size or the number of processors.

Molnar et al. (1994) recommend using small bin sizes as a means
to achieve be�er load balance. Naturally, as bins get smaller, work is
more evenly distributed. However, decreasing bin size also implies
an increase of the total workload itself, since triangles have to
be processed by every bin they overlap. �us, the choice of the
appropriate bin size is a delicate one and plays an important role in
the design of a graphics pipeline (Chen et al. 2005, 1998; Dan Crişu
2012). A mathematical approach to predict performance curves and
ideal bin sizes was presented by McManus and Beckmann (1996).

Our work does not address selection of bin sizes, but rather aims
to identify guidelines for the arrangement of bins, regardless of
their extent, and provide blueprints for e�ective binning pa�erns.

2.2 GPU patterns
On the GPU, physical cores may be grouped together hierarchically
to form powerful logical processing units. In recent NVIDIA archi-
tectures (NVIDIA 2009), up to 30 streaming multi-processors (SMs),
each capable of maintaining thousands of threads, are grouped into
a small number of graphics processing clusters (GPCs). Top-level
workload distribution for rasterization occurs only on the GPC level
of the hierarchy, with each GPC representing one logical rasterizer.

To analyze binning pa�erns on NVIDIA GPUs, we use a cus-
tom GLSL shader and the NV_shader_thread_group extension to
identify pixel locations that submit to the same group of SMs, and
are therefore handled by the same GPC. According to our results,
on �ve out of six recent �ag ship models, a diagonal alignment at
45◦ is used. Bin sizes are consistently small at 16 × 16 pixels in an
e�ort to mitigate load imbalance (Purcell 2010). We also consider
Intel and AMD models, for which we used a timing-based approach
to identify screen regions that in�uence each other’s performance
in processing fragments. On those architectures, load balancing
appears to not be limited to rasterizers alone. For the AMD R9
270X and HD 7870 models, e.g., we detected 8 separate domains
distinctly sharing rendered workload, in contrast to the 2 o�cially
documented rasterizers available (AMD 2012). We suspect that this
is due to those architectures employing a more �ne-grained load
balancing concept directly between individual compute units.

(a) GTX580/680 (b) GTX 780 Ti (c) GTX 1080 (d) Titan Xp

(e) HD 4000 (f) HD 530 (g) 6770M (h) R9 270X

Figure 1: Observed patterns for workload distribution used
in GPUs by NVIDIA (a–d), Intel (e, f) and AMD (g, h).

3 GUIDELINES FOR PATTERN DESIGN
An e�ective pa�ern design for load balancing should consider the
workload characteristics and thus the content being rendered. To
this end, we identify fundamental caveats and run statistical tests on
versatile rendering content to derive guidelines for pa�ern design.
To obtain a manageable parameter space, we adopt the following
restrictions regarding layout combinations for bins and viewports:
First, we only consider square bin resolutions, which is common
practice in existing so�ware and hardware pipelines. Second, bin
sizes are considered to be an immutable property of the underlying
architecture. �ird, the pa�ern layout must not depend on high-
level parameters, such as window resolution or size. Fourth, all

E�ective Static Bin Pa�erns for Sort-Middle Rendering HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

(a) Age of Mythology (2014) (b) Total War: Shogun 2 (2011) (c) Rise of the Tomb Raider (2015)

Figure 2: Selected game scenes from our data set. Images show the original rendering with an overlay of the output by the
so�ware rendering pipeline we used to verify our analytical results. Not shown here: Deus Ex: Human Revolution (2011), Tomb
Raider (2013), Assassin’s Creed IV: Black Flag (2013), The Witcher 3: Wild Hunt (2015) and NVIDIA’s Stone Giant tech demo.
Age of Mythology capture courtesy of Microso�. Total War: Shogun 2 capture courtesy of �e Creative Assembly. Rise of the Tomb Raider screenshot courtesy of Crystal Dynamics.

analytical and practical evaluations focus on applications running
in landscape mode at screen resolutions with a 16:9 aspect ratio.

In the following sections, we assume that a low variance in
fragment load across all rasterizers provides a meaningful indicator
of e�ective work balancing and draw conclusions accordingly.

Our guidelines are grounded in both a theoretical analysis and
in an analytical evaluation on a representative data set modeling
typical GPU workloads. In order to faithfully reproduce realistic
GPU rasterization tasks, we have selected seven video games and a
recent NVIDIA tech demo (see Figure 2). For each test application,
we have captured the triangle stream for at least 20 frame snapshots
by injecting a custom DirectX 11 DLL, which saves clip space data
directly to a �le. All processing was done at 1080p resolution.

3.1 Space utilization
An e�cient binning pa�ern must consider the number of available
rasterizers in its layout. To con�rm this statement, consider a naı̈ve
binning policy for N parallel rasterizers, where each rasterizer is
assigned to an entire row of bins on the viewport (c.f. Crocke� and
Orlo� 1993). Although this policy may achieve satisfactory results
with a small bin heighth and low number of rasterizers N , choosing
either value such that h · (N − 1) surpasses the vertical resolution of
the viewport implies that at least one rasterizer remains idle. Such
a naı̈ve pa�ern would, therefore, not scale well with increasing
rasterizer count. Given the restriction that bin sizes are immutable,
the only option towards a scalable binning policy is to pack bins
for all available rasterizers into a (preferably small) 2D region and
thereby increase the likelihood of achieving high occupancy.

3.2 Local clustering of geometry
In most scenes, geometry is not uniformly distributed (Deering
1993). Decorative elements such as grass, soil or water are repre-
sented with low geometric density, while prominent objects, such
as trees, edi�ces or living entities, are designed with a stronger
emphasis on geometric detail. �ese observations suggest that the
geometry of a 3D scene, projected to a 2D viewport, has a tendency
to form local clusters in screen space. In this case, assigning one
rasterizer to contiguous bins could considerably hurt performance.

In order to quantify the in�uence of local geometry clusters on
load balancing, we have assessed the potential improvement that
can be achieved by iteratively increasing the distance between bins

assigned to the same rasterizer, as outlined in Figure 3. For our
evaluation running at 1080p, we �rst assume a bin size X × X and
subdivide the screen into quad regions containing four bins each
(Figure 3a). Each quad is then assigned its own dedicated rasterizer,
and we compute the reference standard deviation σr ef over all
rasterizers from the ideal fragment load in this con�guration. We
then proceed to break up the quads by incrementally increasing the
distance between the bins assigned to each rasterizer. From each
original quad, one bin location is moved two slots to the right, one
is moved two slots upward and one is moved both upwards and
to the right (Figure 3b). A�er the �rst iteration, the gap between
bins assigned to the same rasterizer spans two slots (Figure 3c).
We continue to space out the bin locations in this way until the
distance between the bins for each rasterizer surpasses half of the
viewport height. In each iteration i , we record the current standard
deviation σi of rasterizer workload and compare it to σr ef . �e
ideal distance between rasterizers is given by the iteration index i
that produced the smallest ratio σ/σr ef , multiplied by two.

(a) Initial state (b) First iteration (c) New layout

Figure 3: Progression for spacing out clustered bins.

Figure 4 shows the results of this experiment for several di�erent
bin sizes, averaged over our entire data set. Note that the best o�set
for a bin size X × X is usually found at or close to distance ∆X
such that 2 · ∆X · X = 1080. �us, the ideal distance between bins
assigned to the same rasterizer is equal to their maximal possible
separation. Furthermore, the e�ect of breaking up the original
clusters has a major impact on the variance, reducing σ by at least
30%. Note that, at 160× 160, no o�set occurred, since 160 · 4 > 1080

2 .

3.3 In�uence of orientation
Both space utilization and local clustering behavior imply that bins
assigned to the same rasterizer should be as widely spaced out as

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA B. Kerbl et al.

Figure 4: Spreading out bin groups assigned to the same ras-
terizer lessens impact of triangle clusters and reduces load
variance. Smallest σ usually occurs at maximal separation.

possible in order to avoid local rasterizer repetition. However, we
have yet to establish whether the impact of these repetitions is
equally severe in all directions. In real-world scenarios, gravity
ensures a natural preference of horizontal structures in bedrock,
bodies of water and terrain. In contrast, man-made structures,
plants and animate entities o�en stand upright, a�ording them a su-
perior vantage point. As a ma�er of fact, very few elements remain
that are naturally diagonally aligned. Graphics applications aiming
to present realistic scenes exhibit similar structural properties in
their geometry. Consequently, we can assume that horizontal and
vertical rasterizer repetitions make a pa�ern more susceptible to
localized triangle clusters and therefore more likely to su�er from
workload imbalances.

In order to con�rm this theory, we analyze the in�uence on load
variance when subdividing the viewport into screen space lines
of varying orientation. Samples for computing variance are taken
at pixel level by se�ing up a sliding window of N × N pixels and
sampling N consecutive pixel locations along a line through the
center of the sliding window in a given direction, de�ned by an
angular parameter. Line sampling is performed using a Bresenham
algorithm aligning with the desired angle. �e sum of the fragments
submi�ed to the N pixels in each line is recorded. We then com-
pute the standard deviation σ of the fragment counts for the given
direction over all sliding window positions. σ is further normalized
for each scene by dividing with the average number of fragments

(a) Full test set (b) Age of Mythology

Figure 5: Variance of fragment load when dividing the view-
port into pixel lineswith di�erent orientations. Numbers in-
side the le� circle give the line length N that is illustrated by
the corresponding ring. Horizontal and vertical directions
exhibit high variance (red). Only for Age of Mythology is the
variance higher with vertical lines than with horizontal.

per pixel. �is process is performed for a discrete set of directions,
yielding the average variance for each tested orientation.

We list the extrema of normalized average standard deviations,
as well as the corresponding orientations for all tested applications
and sliding window resolutions in Table 1. Furthermore, Figure 5
provides a more intuitive classi�cation of all tested directions on
our data set, with each concentric circle representing a di�erent line
length N . Based on our analysis, all applications show the highest
variance in fragment load between lines oriented at fully horizontal
and vertical orientations, thus con�rming our initial assumption.
With the exception of Age of Mythology, horizontal structures ap-
pear to have a much bigger impact than vertical ones. �is is easily
explained: Age of Mythology is the only application that enforces a
�xed top-down view and has most objects of interest (e.g., units,
buildings and resources) vertically aligned. All remaining applica-
tions place the viewer at a �rst or third person perspective. From a
view point raised 1-2m above ground, far-reaching planar meshes
(e.g., terrain, water, �oors, roo�ops) tend to line up with the hori-
zon, causing a signi�cant concentration of geometry (and thus
overdraw) at horizontal lines. Furthermore, most scenarios place
complex objects on or close to a �at surface. Based on these results,
we formulate the goal for e�ective binning to avoid both vertical
and horizontal rasterizer repetitions whenever possible.

Table 1: Direction of the lowest and highest average standard deviation (normalized) along all directions for di�erent applica-
tions. High σ indicates that an e�ective pattern should avoid assigning bins along those directions to the same rasterizer.

Samples N AoM AC 4 Tomb Raider R.o.t.T.R. Stone Giant Shogun 2 Deus Ex: HR Witcher 3
(per angle) σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi

16 1 1.04 1 1.03 0.64 0.65 0.96 0.98 0.52 0.53 1.61 1.7 0.7 0.72 1.5 1.56
(46◦) (0◦) (44◦) (90◦) (44◦) (90◦) (44◦) (94◦) (44◦) (90◦) (44◦) (92◦) (44◦) (90◦) (46◦) (92◦)

32 0.95 1 0.96 1.01 0.61 0.63 0.92 0.96 0.51 0.52 1.51 1.67 0.68 0.71 1.4 1.53
(46◦) (0◦) (44◦) (90◦) (44◦) (90◦) (44◦) (90◦) (46◦) (90◦) (136◦) (90◦) (44◦) (90◦) (136◦) (90◦)

64 0.88 0.94 0.92 0.99 0.6 0.61 0.86 0.91 0.5 0.51 1.39 1.63 0.65 0.68 1.29 1.48
(44◦) (0◦) (44◦) (90◦) (46◦) (90◦) (44◦) (88◦) (44◦) (90◦) (44◦) (90◦) (44◦) (90◦) (136◦) (90◦)

128 0.78 0.85 0.84 0.95 0.56 0.59 0.78 0.85 0.47 0.5 1.22 1.58 0.60 0.66 1.15 1.42
(136◦) (0◦) (44◦) (90◦) (44◦) (90◦) (44◦) (88◦) (44◦) (90◦) (44◦) (90◦) (44◦) (90◦) (46◦) (90◦)

E�ective Static Bin Pa�erns for Sort-Middle Rendering HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

3 4 5 6 7 8 1
4 5 6 7 8 1 2

4 5 6 7 8 1 2 3
5 6 7 8 1 2 3 4
6 7 8 1 2 3 4 5

2 3 4 5 67 8 1
2 3 4 5 6 78 1

2 3 4 5 6 7 81

3
2

(a) Diagonal

2
7 8

1

5 6
7 8

2
3 4
1

3 4
5 6 2

7 8
1

5 6
7 8

2
3 4
1

3 4
5 6

2
7 8

1

5 6
7 8

2
3 4
1

3 4
5 6 2

7 8
1

5 6
7 8

2
3 4
1

3 4
5 6

(b) Z-Curve

3
4

2
1 6

78
5

1 2
345

67
8
1 2

34
5
6 7

8 1
2 3

4
56

7 8 1 2
34

5
6 7

8 1
2 3

4
56

7 8
1
23

456
7 8

12
3 4 5

6 7
8

(c) Hilbert Curve

1

78
2

5

6
3
4

3

8

1
5

4

2

76
6 3

2

5

3

1

1

4

4

5

1

5
2

2

5

3
3

2

7 6
6

2
5

8
8

8
8

1

7

6

6

14
4

3

7 8

6

5

4 7

1

8 46

1

74

(d) PRUT

23 45 6 71
2

3
4

5 6
7

8
1

4

5

6 7 2

3

8
13

4

5

6
7

8
1

3

45

6

81

2

3

5
2

3

2

4

1

5

6

7

8
7

6
7

8

23

4
2 1

1
5

78

5 6
8 4

(e) HMD

6 7 8 1 2 3 45
2 3 4 5 6 7 81

2 3 45 6 7 8 1
2 3 4 5 6 7 81

6 7 8 1 2 3 45
2 3 4 5 6 7 81

2 3 45 6 7 8 1
2 3 4 5 6 7 81

(f) X-shi�

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

(g) Y-shi�

2 3 4 5 6 78 1
2 3 45 6 7 8 1

2 3 4 5 6 7 81

23 4 5 6 7 8 1
2 3 4 5 67 8 1

2 34 5 6 7 8 1

2 3 4 5 6 7 8 1
2 3 4 56 7 8 1

(h) X-shi�+o�set

2 3 4 5 6 7 81
2 3 4 5 67 8 1

4 5 6 72 38 1
2 3 4 5 6 7 8 1

2 3 45 6 7 8 1 2 3 45 6 7 8 1
2 3 41 2 3 41 56 7 86 7 8

5 6 7 8 1 23 4
2 31 2 315 6 7 85 6 7 844

(i) Sudoku

2 3 4 5 67 8 1
2 3 45 6 7 8 1

2 3 4 5 6 7 81

2 34 5 6 7 8 1
2 3 4 5 6 78 1

23 4 5 6 7 8 1

2 3 4 5 6 7 8 1
2 3 4 56 7 8 1

(j) Van der Corput

Figure 6: Illustration of tested rasterizer patterns in bin tiles of size 8. Bins with same color are assigned to the same rasterizer.

4 DESIGNING AND EVALUATING PATTERNS
In this section, we describe ten di�erent pa�erns based on sug-
gestions from previous work, adaptations of common space �lling
techniques and our analysis of GPU hardware rasterization. Fur-
thermore, we incorporate the insights gained in Section 3 in an
e�ort to improve existing techniques and design a superior binning
policy. We categorize, discuss and compare all pa�erns based on
their basic approach. Finally, we pick the most promising pa�ern
from each category to analyze trends and prospects for their ex-
pected e�ectiveness. All considered pa�erns (shown in Figure 6)
are assessed using realistic clip space geometry from our data set.

Since an ideal binning policy would ensure completely uniform
workload among all rasterizers, we rate pa�erns based on the vari-
ance of fragment load they produce for individual rasterizers. We
process our input geometry data according to OpenGL conventions
and record the amount and distribution of the resulting fragments,
generated by the triangles processed in each rasterizer. In order
to ensure that the observed trends are generally valid, we always
assess variance at multiple bin sizes and rasterizer counts.

As a baseline for comparison, we choose the Diagonal pa�ern
(Figure 6a) used in several recent GPU models o�ered by NVIDIA.
�is pa�ern can be generated as follows: Initially, all N rasterizers
are lined up in ascending order according to their index. With each
row, the index of the �rst rasterizer is o�set by one slot. Indices
outside the possible range are wrapped around, creating a repetitive
pa�ern. �is policy leads to those bins that are assigned to a given
rasterizer forming a diagonal line.

4.1 Space �lling curves
Space �lling curves are a popular concept for e�ciently querying
and addressing multidimensional data. In computer graphics, pop-
ular applications include creation of spatial data structures, as well
as optimizing two-dimensional memory access when programming
for the GPU (Nocentino and Rhodes 2010). Here, we assess the

performance of two space �lling curves that are well-established
and routinely employed, namely the Z-Curve and the Hilbert Curve.

Z-Curve. To produce a Z-Curve pa�ern that covers the entire
viewport, we traverse all rasterizer bins and compute the 2D Mor-
ton code mxy for each individual bin location, where (0, 0) → 0
indicates the bin in the lower le� corner. �e index for the rasterizer
to which we assign the bin is then selected asmxy mod N . Figure
6b shows the corresponding binning pa�ern, partially overlayed
with the Z-Curve.

Hilbert Curve. Similarly to Z-Curve, we traverse all bins in the
viewport and use the 2D Hilbert distance function distH (x ,y) to
compute the length of the curve at each location, with the bin in the
lower le� corner specifying the origin. �e appropriate rasterizer is
chosen from N available indices by calculating distH (x ,y) mod N .
An examplary layout following the Hilbert Curve in a bin tile of
size 8 is shown in Figure 6c.

Evaluation. In Figure 7, we show the rasterizer load variance
over our entire data set for Z-Curve and Hilbert Curve. We plot
the recorded values relative to our baseline Diagonal at di�erent
rasterizer counts. �e thick line encompasses results for all tested
bin sizes, ranging from 4 × 4 to 192 × 192 pixels. �e thin opaque
line marks the average over all bin sizes. Both pa�erns appear to
perform similarly well; however, Z-Curve behaves less consistently
with varying bin sizes at low rasterizer counts, as indicated by
the signi�cant thickness of the red line. We thus consider Hilbert
Curve the more suitable pa�ern and use it as representative for the
performance that can be expected from space �lling curves.

4.2 Randomized patterns
In computer graphics, randomization is o�en used as a means to
suppress noticeably repetitive artifacts or to create natural-looking
shapes and pa�erns for visual scenes (e.g., Monte Carlo methods).

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA B. Kerbl et al.

6 8 12 20 36 68 100
Rasterizers employed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l Z-Curve Hilbert Curve

Figure 7: Patterns using space �lling curves.

To assess randomization for our purposes, we examine two pa�erns
whose layout is entirely de�ned by randomly generated values.

Pseudo-random uniform distribution. �is pa�ern is generated
by traversing all bins over the image domain le�-to-right, bo�om-
to-top and using the Mersenne Twister 19937 with a uniform distri-
bution from 1 to N to choose a rasterizer for each bin at random.
Hence, there are no guarantees ensuring minimum separation be-
tween bins assigned to the same rasterizer, or even equal occurrence
of rasterizers throughout the image domain (Figure 6d).

Note that the space �lling curves and the pseudo-random uni-
form distribution are the only pa�erns we evaluate that may create
a unique, non-repetitive arrangement over the entire viewport.
All pa�erns discussed from here on are de�ned by periodically
repeating bin tiles.

Hierarchical maximized distance. Inside a tile of N × N bins, we
use randomized samples to assign rasterizers in a fashion similar
to Poisson disk sampling. To �ll all bins in the N × N tile, we
cycle N times through the N available rasterizer indices to ensure
equal occurrence of all rasterizers in a tile. At each iteration, we
use a simple dart-throwing technique with the rasterizer index as
parameter r . We draw up to 50 vacant sample positions inside
the N × N tile at random. In the absence of an ideal value for the
Poisson disk radius to test against, we always select the bin that is
the farthest from all other bins currently assigned to rasterizer r .
�e result of this process for a 8 × 8 tile is illustrated by Figure 6e.

Evaluation. In Figure 8, we show the relative variance against
our baseline for pseudo-random uniform distribution (PRUT) and
hierarchical maximized distance (HMD). HMD clearly outperforms
PRUT on all accounts. We a�ribute the superior e�ectiveness to
the fact that, in contrast to PRUT, HMD prioritizes large distances
between bins assigned to the same rasterizer and thus encourages
be�er space utilization.

4.3 Fixed shi�
Instead of shi�ing bin assignments by a single position in each
row, as in the Diagonal pa�ern, we investigate the e�ect of wider
�xed-distance shi�s. Based on the trends we identi�ed in the previ-
ous section, doing so could bene�t signi�cantly from be�er space
utilization and a fairer distribution of localized geometry clusters.

6 8 12 20 36 68 100
Rasterizers employed

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l PRUT HMD

Figure 8: Patterns based on randomization.

X-shi�. A horizontal shi� for each row is computed by multi-
plying the row index i with a �xed value ∆ = N

k , where N is the
number of rasterizers, and k gives the number of rows until the
pa�ern repeats. �e corresponding shi� in row i can thus be com-
puted as ∆i = b i ·Nk c mod N . Hence, X-shi� forms rectangular, but
not necessarily square, periodically repeating N ×k tiles (see Figure
6f). Notice that this implies a vertical rasterizer repetition every
k rows. In order to maximize the Euclidean distance between any
two bins assigned to the same rasterizer, we choose k close to the
square root of N as b

√
N c.

Y-shi�. Y-shi� is essentially a rotated version of X-shi�. Shi�
parameters are chosen identically. However, instead of a horizontal
shi� per row, a vertical shi� is applied per column (see Figure 6g).
Similarly to X-shi�, the Y-shi� pa�ern repeats every k columns and,
thus, has a tendency towards horizontal rasterizer repetitions.

X-shi�+o�set. While Diagonal has a small minimum distance be-
tween bins assigned to the same rasterizer, X-shi� has a higher rate
of rasterizer repetition on the vertical axis, making it a potentially
weak candidate in rendering scenarios with prominent vertical
structures (e.g., Age of Mythology). X-shi�+o�set aims to combine
the bene�ts of both approaches: based on the shi� function for
X-shi�, row arrangements are o�set by one position every k rows.
�e shi� in row i can thus be computed as ∆i = b i ·(N+1)

k c mod N .
�ough this modi�cation may be minor, it e�ectively ensures that
vertical rasterizer repetitions do not occur before passing N rows
(see Figure 6h). �us, instead of periodic N × k tiles where k � N ,
X-shi�+o�set can �ll a full N ×N tile of bins before repeating itself.

Evaluation. In Figure 9, we compare �xed shi� pa�erns X-shi�,
Y-shi� and X-shi�+o�set relative to Diagonal. When applied to our
full data set, Y-shi� is clearly trailing behind the other alternatives.
�is comes as no surprise: According to the directional analysis of
our data set, horizontally aligned geometry is much more promi-
nent; thus, the frequent horizontal rasterizer repetitions in Y-shi�
cause its performance to falter. A clear exception to this observed
trend is posed by Age of Mythology, for which the performance of
Y-shi� is generally on par with, and, in isolated cases, clearly be�er
than X-shi�. However, both pa�erns are bested on all occasions by
X-shi�+o�set, which we ascribe to the fact that X-shi�+o�set e�ec-
tively reduces both horizontal and vertical rasterizer repetitions.

E�ective Static Bin Pa�erns for Sort-Middle Rendering HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

6 8 12 20 36 68 100
Rasterizers employed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l Y-shift X-shift X-shift+offset

Figure 9: Comparing �xed shi� patterns.

4.4 Variable shi�
In addition to pa�erns obtained by applying a �xed shi�, we con-
sider two instances of shi� pa�erns with less predictable behavior.

Sudoku. As part of their discussion on suitable binning pa�erns,
Eldridge (2001) implicitly suggest that uniform workload distribu-
tion over periodically repeating N × N tiles can be facilitated by
requiring that no two bins in the same row or column are assigned
to the same rasterizer. Due to its similarity, we call this strategy
Sudoku, a�er the popular Japanese puzzle. A random N ×N tile that
ful�lls the Sudoku constraint can be quickly generated by drawing
a random shi�ing value for each row in the interval [0,N) and
disallowing choosing the same shi� value twice. Figure 6i shows
one arrangement following the Sudoku policy in a bin tile of size 8.

Van der Corput. For this shi�-based pa�ern, row shi�s are com-
puted based on a base 2 Van der Corput low-discrepancy sequence(
0, 1

2 ,
1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 , . . .

)
. �e shi� in row i is given by the ith ele-

ment in the sequence, multiplied by the next higher power of two
for the number of rasterizers, 2 dldN e . All shi�s greater than N are
skipped, generating a non-repeating pa�ern inside a bin tile of size
N . Note that this pa�ern also implicitly ful�lls the constraint that
Sudoku is based on. Figure 6j shows the de�nite arrangement of a
bin tile that is generated by this method for N = 8.

Evaluation. Figure 10 compares the relative variance for Sudoku
and Van der Corput. Both pa�erns show very similar development
for varying rasterizer counts and bin sizes. We a�ribute this circum-
stance to their shared quality, namely the constraint of allowing
rasterizers only once per row and column. Although both pa�erns
appear to be very e�ective at distributing workload evenly, Van der
Corput exhibits an evident advantage over Sudoku.

4.5 Comparison of all categories
Finally, we compare the most promising pa�erns from all categories
and assess their characteristics and overall behavior. Figure 11
shows the development of all approaches at three di�erent bin sizes.
In order to stress the possible bene�ts of using one pa�ern over
another, we plot the coe�cient of the variation cv =

σ
µ . �e choice

of using cv over σ is motivated by the fact that, in contrast to
comparing quality of workload distribution, the standard deviation
cannot adequately quantify the exact potential for improvement
without knowing the average load per rasterizer µ.

6 8 12 20 36 68 100
Rasterizers employed

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l Sudoku Van der Corput

Figure 10: Comparing variable shi� patterns.

Trends for low rasterizer counts are identical at all evaluated
bin resolutions: Diagonal quickly falls behind all other techniques
due to its poor handling of clusters and space utilization. All other
pa�erns exhibit a much slower growth of cv , with X-shi�+o�set
and Van der Corput tied for best performance. However, for higher
bin resolutions and rasterizers counts, X-shi�+o�set gradually falls
behind. For bigger bin sizes, the di�erences between the techniques
(with the exception of Diagonal) become less pronounced. Note the
ranges of the plo�ed coe�cients for the respective bin sizes. �e
recorded values of cv at 128 × 128 di�er from those at 16 × 16 by
more than one order of magnitude. �us, di�erences between the
individual techniques have a much higher relative impact at bigger
bin sizes in terms of performance. �e most promising pa�ern out
of those evaluated is Van der Corput, with its coe�cient of variation
consistently below or on par with its contenders.

Considering our previously stated guidelines for pa�ern design,
the high performance of Van der Corput is not surprising. In each
2D bin tile (N × N), each rasterizer is referenced with the same
frequency, which leads to good space utilization. Within each
row, the distance between bins assigned to the same rasterizer
is maximal. �e same is true for each individual column. �us,
horizontally and vertically dense regions will be assigned to the
same rasterizer only when there is no way to avoid that. Moreover,
the pa�ern generation rule ensures that the 2D distance between
rasterizers is always high, avoiding local clusters. �e direction in
which rasterizer assignments repeat within a 2D region is loosely
oriented along a 45◦ angle. All these considerations also apply for
X-shi�+o�set, which also shows a very competitive performance.
However, Van der Corput is locally less structured thanX-shi�+o�set,
which probably is the reason for giving it an additional edge over the
other approaches, especially when the rasterizer count increases.

4.6 In�uence of Partitioning
So far, we have evaluated pa�erns with typical GPU workloads for
complete frames. However, when rendering large scenes, the GPU
cannot process all primitives at once and only a limited number
of primitives are in �ight concurrently. In order to understand the
in�uence of this workload partitioning in the context of binning
pa�erns, we split the input triangle stream of each scene into M
batches of equal size, while maintaining the order of primitives as
they were submi�ed to the GPU. We then simulate the binning of
each individual batch separately, evaluate the resulting temporally

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA B. Kerbl et al.

Figure 11: Performance comparison on our data set for the most promising patterns, alongside the Diagonal baseline. �e
coe�cient of variation cv estimates the imbalance in rasterizer workload for each pattern at di�erent con�gurations. While
X-shi�+o�set performs as well as Van der Corput for low rasterizer counts, they usually start to diverge at ∼20 rasterizers.

local variance, and compute an average cv from all M individual
batches. By performing this process with several di�erent numbers
of partitions M , we can identify trends that are likely to in�uence
pa�ern performance on actual hardware.

Figure 12a shows the in�uence of the batch size on cv when
using 6 rasterizers and a bin size of 16 × 16. �is is equivalent
to the con�guration used in the NVIDIA GeForce Titan Xp and
thus representative of current graphics hardware. For very small
batch sizes, the relative variance is high, as only few triangles are
rendered and few bins actually receive workload. However, as
the batch size increases to 10 − 25% of the full scene, cv already
converges to the �gures previously measured for the entire frame.
�is points towards pa�erns already performing as expected when
only a small portion of the scene can be processed in parallel. As
the amount of rendered geometric detail is steadily increasing, this
result also points towards the necessity to be able to process at least
10% of a scene at once to achieve close-to-ideal load balancing.

We further consider the expected bene�t of choosing one pat-
tern over another for these smaller workloads. To visualize their
relative behavior in detail, we plot the development of cv as the
degree of partitioning increases, relative to Van der Corput as a
reference in Figure 12b. �e relative di�erence in performance be-
tween pa�erns steadily decreases as the batch size becomes smaller.
However, when using batches the size of 1/100 of the full scene,
the di�erence between the best and worst pa�ern still makes for a
factor of 2×. Like in our previous experiments, both X-shi�+o�set
and Van der Corput remain the most e�cient methods, even though
the initial advantage of X-shi�+o�set degrades with batches get-
ting smaller. Surprisingly, we found that HMD approaches more
advanced pa�erns with increasing degree of partitioning, and even
reaches sophisticated space �lling curves. �is can be explained by
the fact that smaller batches a�ect a limited portion of the screen
and HMD explicitly considers separation of rasterizers in its layout,
which is the most dominant factor when rendering few primitives.

As can be seen in Figure 12c, increasing the number of rasterizers
to 20 results in a stronger in�uence of partitioning on Diagonal.
While Diagonal performs equally well as HMD when processing
the entire scene at once, it fails to show relative improvement and
is eventually even overtaken by the straightforward PRUT pa�ern.
�us, as the size of batches decreases, Diagonal eventually falls be-
hind all other alternatives. Furthermore, we �nd this setup to be one

of several instances where Z-Curve eventually beats Hilbert Curve.
�is is not a general rule, but still a common occurrence, which
solidi�es our initial impression that space �lling curves should be
considered on a case-by-case basis, since there is no single best
choice for all con�gurations.

Finally, we found that partitioning favorably a�ects X-shi�+o�set
when using bigger bin sizes with high rasterizer counts. In such
con�gurations, as shown above, the pa�ern usually starts to trail
behind Van der Corput when processing entire scenes. However,
increasing the number of batches the scene is partitioned into causes
X-shi�+o�set to quickly approach the reference. We consider this
circumstance an argument for the general usability of X-shi�+o�set,
as its divergence from Van der Corput appears to be mitigated by
the (likely) partitioning of large scene input data.

4.7 Discussion
�e coe�cient of variation (see Figure 11) lets us speculate on
how the employed pa�erns may translate into performance on
real hardware. For a bin size of 16 × 16 @ 1080p, where a bin
covers 1/120 of the screen horizontally, up to 18 rasterizers achieve
a cv < 1% when rendering entire frames using the best pa�ern.
�is setup corresponds to the bin size employed on current NVIDIA
GPU designs, which o�en rely on a diagonal pa�ern. Translated
into runtime performance, rasterizers must handle a load imbalance
of less than 1% on average. Considering that there might be other
system-wide load balancing strategies happening concurrently, for
instance, with vertex processing on the GPU, one would probably
not expect any measurable performance hit. If a diagonal pa�ern
is used, the 1% threshold is already exceeded with 10 rasterizers.

We hypothesize that the challenges of �nding a static pa�ern that
ensures equally uniform load balancing across many processors
is one reason for using relatively few logical rasterizers (GPCs)
in current GPU designs, even as the SM count is increased. A
consequence of this design choice is that more advanced dynamic
load balancing strategies between a rasterizer and its associated
multiprocessors are needed.

Naturally, the demands on the rasterizer itself also increase as
the resolution increases. Since the graphics pipeline must enforce
primitive order during rasterization (Purcell 2010), the rasterizer
is not completely free in its strategies for parallelization. �us, it
is questionable whether rasterization performance can be scaled

E�ective Static Bin Pa�erns for Sort-Middle Rendering HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

(a) (b) (c)

Figure 12: Developments in pattern performance with regard to scene partitioning. (a) For con�gurations corresponding to
current hardware, partitioning strongly a�ects cv and thus the expected quality of load balancing. Measurements converge
toward previous results at a batch size of about 1/10 of the scene. (b) Relative to Van der Corput,HMD converges toward similar
performance as space �lling curves. As with increasing the amount of rasterizers, partitioning causes Diagonal to eventually
deteriorate. Con�guration (c) shows Diagonal being overtaken by the trivial PRUT, and Z-Curve outperformingHilbert Curve.

along with fragment processing performance in future hardware
designs without increasing the number of rasterizers.

With larger bin sizes, the in�uence of the pa�ern becomes more
severe. In these cases, our best contender, the Van der Corput
pa�ern, deviates from an ideal distribution by up to 10% when
rendering full frames with 30 rasterizers and a bin size of 1/30 of
the viewport width, and 25% with a bin size of 1/15. Such larger
bin sizes relative to the viewport width might be found on mobile
devices, which render in lower resolution, or in so�ware-based
rendering, which tries to avoid communication overhead.

Analyzing the in�uence of workload partitioning on rasterizer
load variance, our experiments indicate that about 10 − 20% of
the scene should be processed in parallel. In this case, we see an
equally good work distribution as if the entire scene was processed
as one. When processing only small geometry batches, the relative
performance of the pa�erns hardly change, indicating that our
pa�ern design criteria are largely independent of the amount of
data being rendered. �is is not surprising, as most considerations
guide local bin assignment rather than a global strategy.

It is tempting to draw the conclusion that a small bin size is
essential for good performance. However, our analysis only con-
siders the load balancing characteristics and ignores the cost for
data transfer and duplication. A smaller bin size will quickly lead to
increased communication overhead, as the same triangle has to be
transmi�ed to multiple rasterizers. Depending on implementation,
this overhead may outweigh the bene�ts of smaller bin sizes.

5 PARALLEL SOFTWARE SIMULATION
In order to test our pa�ern designs in a complete system and to ver-
ify theoretical results for their impact on rendering performance, we
have built a so�ware rendering pipeline running in CUDA, which
supports arbitrary pa�erns for rasterization (Kenzel et al. 2017).
�e renderer follows a full streaming model, employs a sort-middle
design, and performs dynamic load balancing between geometry
processing and rasterization/fragment processing. Furthermore, it
does not process the entire scene at once, but gradually streams
the data to the rasterizers, overall mimicking the GPU pipeline.

�us, this experimental setup gives an accurate estimate of the
performance in�uence of the tested pa�erns. We have extended
the original input geometry with auxiliary data listing the appro-
priate rasterizer indices for every triangle. We precompute these
data for all test scenes, bin sizes and pa�erns and load them during
rendering to perform load balancing according to the tested pa�ern.

We process our test data set at two di�erent bin sizes of 16 × 16
and 64 × 64 pixels and assess pa�ern performance for rendering
at 1080p resolution. As we do not have access to the hardware
rasterizers (GPCs) directly, our implementation employs an equal
number of rasterizers on each SM in so�ware. �us, the rasterizer
count must be either smaller than or a multiple of the SM count, and
we run our tests using 6, 20 and 60 logical rasterizers. We simulate
elaborate fragment shading by performing 2500 fused multiply-add
(FMA) instructions before submi�ing the fragment color.

Table 2 shows the average achieved frame rates as frames per
second (FPS) for running the full test set with each technique at
di�erent bin sizes and rasterizer counts. �e numbers in brackets
further state the harmonic mean of the average relative speed-up
in each scene over the baseline set by Diagonal. �e behavior of
the pa�erns at di�erent se�ings closely matches our predictions:
with higher numbers of rasterizers and bigger bin size, the impact
of choosing a sophisticated pa�ern increases, outclassing Diagonal
by a factor of almost 1.9× using 60 rasterizers at 1080p. �e relative
performance gains between di�erent pa�erns is also ampli�ed with
the rise of either parameter. Overall, we can summarize that both
X-shi�+o�set and Van der Corput perform the strongest, with the
former dominating at low and the la�er at high rasterizer counts.

6 CONCLUSION
We have identi�ed and analyzed possible in�uential factors on per-
formance to be considered when designing a static binning pa�ern
for sort-middle rasterization. In an e�ort to optimize load balancing
behavior, we have presented several di�erent examples of pa�erns
with distinct characteristics and assessed them both analytically
and practically. Runtime measurements for each pa�ern running
at various con�gurations were obtained using an e�cient so�ware

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA B. Kerbl et al.

Table 2: Results for tested patterns on our data set at multiple con�gurations. For each pattern, we show average achieved
frame rate, as well as relative speed-up over Diagonal. �e technique with best performance is marked bold for every setup.

FPS (speedup) with 16 × 16 bins FPS (speedup) with 64 × 64 bins
#Rasterizers Hilbert HMD X-shi�+o�set Van der Corput Hilbert HMD X-shi�+o�set Van der Corput

6 3.3 (1.00) 3.3 (1.00) 3.3 (1.00) 3.3 (1.00) 3.3 (0.99) 3.3 (0.99) 3.4 (1.01) 3.4 (1.01)
20 10.9 (1.00) 10.9 (1.00) 11 (1.01) 11 (1.01) 9.5 (1.02) 9.6 (1.04) 10.3 (1.12) 10.3 (1.11)
60 16.2 (1.09) 16.1 (1.08) 16.4 (1.10) 16.4 (1.10) 10.6 (1.72) 10.3 (1.70) 11.0 (1.78) 11.6 (1.89)

rendering pipeline on the GPU. Based on our predictions and their
con�rmation from the measured runtime results, we have success-
fully identi�ed a set of pa�erns that scale well with the number
of rasterizers and exhibit signi�cantly improved performance over
naı̈ve approaches. Speci�cally, we have identi�ed two deterministic
pa�erns that exhibit close-to-ideal behavior and are easy to apply.
Although performance gains may be negligible for small bin sizes
and low rasterizer counts, they become more pronounced when
either of these values grows. �e desire for high resolutions and
the communication penalty of small bin sizes implies the need for
more rasterizers, in turn creating a strong need for a good binning
pa�ern in future hardware designs.

ACKNOWLEDGMENTS
�is research was supported by the DFG grant STE 2565/1-1 and
the Austrian Science Fund (FWF) I 3007. Age of Mythology™:
Extended Edition © 2002–2014 Microso� Corporation. All rights
reserved. TOMB RAIDER © 2017 SQUARE ENIX LIMITED. To-
tal War: Shogun 2 © SEGA. �e Creative Assembly, Total War,
Total War: SHOGUN and the Total War logo are trademarks or
registered trademarks of �e Creative Assembly Limited. SEGA
and the SEGA logo are either registered trademarks or trademarks
of SEGA Corporation. All rights reserved. Without limiting the
rights under copyright, unauthorised copying, adaptation, rental,
lending, distribution, extraction, re-sale, renting, broadcast, public
performance or transmissions by any means of this Game or ac-
companying documentation or part thereof is prohibited except as
otherwise permi�ed by SEGA.

REFERENCES
AMD. 2012. White Paper: AMD GRAPHICS CORES NEXT (GCN) ARCHITECTURE.

h�ps://www.amd.com/Documents/GCN Architecture whitepaper.pdf. (2012). Re-
trieved June 16, 2017.

Jiawen Chen, Michael I. Gordon, William �ies, Ma�hias Zwicker, Kari Pulli, and
Frédo Durand. 2005. A Recon�gurable Architecture for Load-balanced Rendering.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware (HWWS ’05). ACM, New York, NY, USA, 71–80. DOI:h�p://dx.doi.org/
10.1145/1071866.1071878

Milton Chen, Gordon Stall, Homan Igehy, Kekoa Proudfoot, and Pat Hanrahan.
1998. Simple Models of the Impact of Overlap in Bucket Rendering. In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, S. N. Spencer (Ed.). �e
Eurographics Association. DOI:h�p://dx.doi.org/10.2312/EGGH/EGGH98/105-112

Petrik Clarberg, Robert Toth, and Jacob Munkberg. 2013. A Sort-based Deferred
Shading Architecture for Decoupled Sampling. ACM Trans. Graph. 32, 4, Article
141 (July 2013), 10 pages. DOI:h�p://dx.doi.org/10.1145/2461912.2462022

�omas W. Crocke� and Tobias Orlo�. 1993. A MIMD Rendering Algorithm for
Distributed Memory Architectures. In Proceedings of the 1993 Symposium on Parallel
Rendering (PRS ’93). ACM, New York, NY, USA, 35–42. DOI:h�p://dx.doi.org/10.
1145/166181.166186

Dan Crişu. 2012. Hardware algorithms for tile-based real-time rendering. Ph.D. Disser-
tation. Del� University of Technology.

M. F. Deering. 1993. Data complexity for virtual reality: where do all the triangles go?.
In Proceedings of IEEE Virtual Reality Annual International Symposium. 357 – 363.

Ma�hew Eldridge, Homan Igehy, and Pat Hanrahan. 2000. Pomegranate: A Fully
Scalable Graphics Architecture. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’00). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 443–454. DOI:h�p://dx.doi.org/10.
1145/344779.344981

Ma�hew Willard Eldridge. 2001. Designing Graphics Architectures Around Scalability
and Communication. Ph.D. Dissertation. Advisor(s) Hanrahan, Pat. AAI3026802.

Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather, David Ellsworth,
Steve Molnar, Greg Turk, Brice Tebbs, and Laura Israel. 1989. Pixel-planes 5: A Het-
erogeneous Multiprocessor Graphics System Using Processor-enhanced Memories.
SIGGRAPH Comput. Graph. 23, 3 (July 1989), 79–88. DOI:h�p://dx.doi.org/10.1145/
74334.74341

M. Juliachs, T. Carrard, and J.-P. Nominé. 2007. Hybrid CPU-GPU Unstructured
Meshes Parallel Volume Rendering on PC Clusters. In Proceedings of the 7th Eu-
rographics Conference on Parallel Graphics and Visualization (EGPGV ’07). Euro-
graphics Association, Aire-la-Ville, Switzerland, Switzerland, 85–92. DOI:h�p:
//dx.doi.org/10.2312/EGPGV/EGPGV07/085-092

Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg, and Markus Steinberger. 2017. A
High-Performance So�ware Graphics Pipeline Architecture for the GPU. (2017).
to appear.

Samuli Laine and Tero Karras. 2011. High-performance So�ware Rasterization on
GPUs. In Proc. High Performance Graphics (HPG ’11). 79–88.

Wai-Sum Lin, Rynson W. H. Lau, Kai Hwang, Xiaola Lin, and Paul Y. S. Cheung. 2001.
Adaptive Parallel Rendering on Multiprocessors and Workstation Clusters. IEEE
Trans. Parallel Distrib. Syst. 12, 3 (March 2001), 241–258. DOI:h�p://dx.doi.org/10.
1109/71.914755

Donald McManus and Carl Beckmann. 1996. Optimal Static 2-dimensional Screen
Subdivision for Parallel Rasterization Architectures. In Proceedings of the Eleventh
Eurographics Conference on Graphics Hardware (EGGH’96). Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, 59–67. DOI:h�p://dx.doi.org/10.2312/
EGGH/EGGH96/059-067

Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. 1994. A Sorting
Classi�cation of Parallel Rendering. IEEE Comput. Graph. Appl. 14, 4 (July 1994),
23–32. DOI:h�p://dx.doi.org/10.1109/38.291528

Steven Molnar, John Eyles, and John Poulton. 1992. PixelFlow: High-speed Rendering
Using Image Composition. SIGGRAPH Comput. Graph. 26, 2 (July 1992), 231–240.
DOI:h�p://dx.doi.org/10.1145/142920.134067

Anthony E. Nocentino and Philip J. Rhodes. 2010. Optimizing Memory Access on
GPUs Using Morton Order Indexing. In Proceedings of the 48th Annual Southeast
Regional Conference (ACM SE ’10). ACM, New York, NY, USA, Article 18, 4 pages.
DOI:h�p://dx.doi.org/10.1145/1900008.1900035

NVIDIA. 2009. Whitepaper: NVIDIA�s Next Generation CUDA Compute Architecture:
Fermi. h�p://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi
Compute Architecture Whitepaper.pdf. (2009). Retrieved April 6, 2017.

Anjul Patney, Stanley Tzeng, Kerry A. Seitz, Jr., and John D. Owens. 2015. Piko: A
Framework for Authoring Programmable Graphics Pipelines. ACM Trans. Graph.
34, 4, Article 147 (July 2015), 13 pages. DOI:h�p://dx.doi.org/10.1145/2766973

Tim Purcell. 2010. Fast Tessellated Rendering on the Fermi GF100. In High Performance
Graphics Conf., Hot 3D presentation.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa,
Ed Grochowski, Toni Juan, and Pat Hanrahan. 2008. Larrabee: A Many-core x86
Architecture for Visual Computing. ACM Trans. Graph. 27, 3, Article 18 (Aug. 2008),
15 pages. DOI:h�p://dx.doi.org/10.1145/1360612.1360617

Lizhe Wang, Dan Chen, Ze Deng, and Fang Huang. 2011. Review: Large Scale Dis-
tributed Visualization on Computational Grids: A Review. Comput. Electr. Eng. 37,
4 (July 2011), 403–416. DOI:h�p://dx.doi.org/10.1016/j.compeleceng.2011.05.010

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://dx.doi.org/10.1145/1071866.1071878
http://dx.doi.org/10.1145/1071866.1071878
http://dx.doi.org/10.2312/EGGH/EGGH98/105-112
http://dx.doi.org/10.1145/2461912.2462022
http://dx.doi.org/10.1145/166181.166186
http://dx.doi.org/10.1145/166181.166186
http://dx.doi.org/10.1145/344779.344981
http://dx.doi.org/10.1145/344779.344981
http://dx.doi.org/10.1145/74334.74341
http://dx.doi.org/10.1145/74334.74341
http://dx.doi.org/10.2312/EGPGV/EGPGV07/085-092
http://dx.doi.org/10.2312/EGPGV/EGPGV07/085-092
http://dx.doi.org/10.1109/71.914755
http://dx.doi.org/10.1109/71.914755
http://dx.doi.org/10.2312/EGGH/EGGH96/059-067
http://dx.doi.org/10.2312/EGGH/EGGH96/059-067
http://dx.doi.org/10.1109/38.291528
http://dx.doi.org/10.1145/142920.134067
http://dx.doi.org/10.1145/1900008.1900035
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://dx.doi.org/10.1145/2766973
http://dx.doi.org/10.1145/1360612.1360617
http://dx.doi.org/10.1016/j.compeleceng.2011.05.010

	Abstract
	1 Introduction
	2 Related Work
	2.1 Bin arrangement and size
	2.2 GPU patterns

	3 Guidelines for pattern design
	3.1 Space utilization
	3.2 Local clustering of geometry
	3.3 Influence of orientation

	4 Designing and evaluating patterns
	4.1 Space filling curves
	4.2 Randomized patterns
	4.3 Fixed shift
	4.4 Variable shift
	4.5 Comparison of all categories
	4.6 Influence of Partitioning
	4.7 Discussion

	5 Parallel software simulation
	6 Conclusion
	Acknowledgments
	References

