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Abstract
Dynamic memory management on GPUs is generally under-
stood to be a challenging topic. On current GPUs, hundreds
of thousands of threads might concurrently allocate new
memory or free previously allocated memory. This leads to
problems with thread contention, synchronization overhead
and fragmentation. Various approaches have been proposed
in the last ten years and we set out to evaluate them on
a level playing field on modern hardware to answer the
question, if dynamic memory managers are as slow as com-
monly thought of. In this survey paper, we provide a con-
sistent framework to evaluate all publicly available memory
managers in a large set of scenarios. We summarize each
approach and thoroughly evaluate allocation performance
(thread-based as well as warp-based), and look at perfor-
mance scaling, fragmentation and real-world performance
considering a synthetic workload as well as updating dy-
namic graphs. We discuss the strengths and weaknesses of
each approach and provide guidelines for the respective best
usage scenario. We provide a unified interface to integrate
any of the tested memory managers into an application and
switch between them for benchmarking purposes. Given
our results, we can dispel some of the dread associated with
dynamic memory managers on the GPU.
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1 Introduction
One of the major hurdles in converting an existing, dynamic
algorithm from the CPU-side onto the GPU is concerned
with handling of dynamic memory. In a single-threaded en-
vironment, the usage of dynamic memory provides a sensible
way of dealing with a highly dynamic application domain.
Solving this same problem in a highly concurrent setting,
as on the GPU, is justifiably hard. Many modern memory
managers on CPUs [3, 4, 6] build on one base design, having
one arena per CPU core to improve CPU cache hit rates, us-
ing amutex to enable concurrent allocation and deallocation
and managing memory in chunks. A straightforward port of
CPU algorithms, designed to deal with orders of magnitude
fewer threads, often does not perform well.
Approaches to manage dynamic memory on GPUs were

first proposed around ten years ago with the introduction of
dynamic memory management via the NVIDIA Toolkit [13],
but there has been renewed interest in the last years due to
new hardware capabilities. Since then, various techniques
and refinements have been proposed to speed up the alloca-
tion of memory, which has long been considered a challeng-
ing issue on a GPU. As modern GPUs can have hundreds
of thousands of threads running concurrently, potentially
trying to allocate and free memory, many problems surface.
These can be thread contention issues, it can include syn-
chronization overhead as well as the ever present problem
of fragmentation. Different solutions have been proposed,
each focusing on a certain set of these problems, claiming
to solve some of the issues. Deciding which approach fits
which application best can be a challenge. Furthermore, new
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Ref. Short Name Year Availability Build Variants Depend on General Results Stable
CUDA-Alloc. Purpose available

[9] XMalloc 2010 ✗ < 7.0 1 ✓ ✓ ✓ ✗

[13] CUDA-Allocator 2010 CUDA API ✓ 1 ✓ ✓ ✓ ✓

[17] ScatterAlloc 2012 Website < 7.0 1 ✗ ✓ ✓ ✓

[20] FDGMalloc 2013 Website < 7.0 1 ✓ Warp-Level ✗ ✗

[19] Reg-Eff 2014 Website < 7.0 4 ✗ ✓ ✓ ✗

[15] KMA 2014 ✗ OpenCL 1 ✗ ✓ ✗ ?

[1] Halloc 2014 GitHub < 7.0 1 ✓ ✓ ✓ ✓

[16] DynaSOAr 2019 GitHub ✓ 1 ✗ SOA ✗ ?

[7] BulkAllocator 2019 ✗ ≥ 7.0 2 ✗ ✓ ✗ ?

[21] Ouroboros 2020 GitHub ✓ 6 ✗ ✓ ✓ ✓

Table 1. This table lists all currently available memory managers on the GPU including their build status (does it work natively
with independent thread scheduling or even requires it) and how many variants exist. Furthermore, if it depends on the
CUDA-Allocator , can be used as a general purpose allocator (or has some limitations), if results are available and performance
overall was stable throughout testing (if available).

architecture features have been introduced (e.g. independent
thread scheduling on the NVIDIA Volta [14] architecture).
These enable new programming paradigms (e.g. blocking al-
gorithms and scheduling guarantees), simplify thread-based
computation and ease the conversion of CPU algorithms to
the GPU.

Various applications benefit from the use of dynamic mem-
ory. This includes dynamic graph analytics (e.g. cuSTINGER [8],
aimGraph [24], faimGraph [22] as well as Hornet [5] already
build on forms of dynamic memory management, either with
host intervention or fixed page sizes directly on the GPU),
data analytics (e.g. RAPIDS [18]), sparse linear algebra (e.g.
AC-SpGEMM [23]) or databases (e.g. kinetica [10]).

In this paper, we attempt to pool the current state-of-the-
art in dynamic memory managers on the GPU. This goes
back as early as 2010 with XMalloc [9], continued with Scat-
terAlloc [17] in 2012, FDGMalloc [20] in 2013, an approach
by Vinkler and Havran [19] and Halloc [1] in 2014 as well
as BulkAllocator [7] and Ouroboros [21] in 2020. For each of
these, we provide a short introduction and in the end, we
thoroughly evaluate all, which are publicly available, on a
large test suite. Both the evaluation framework as well as
all obtained results are available in the GitHub repository.
This includes tests of allocation performance, performance
scaling, mixed allocation, fragmentation and out-of-memory
performance as well as real world testcases, including a syn-
thetic and dynamic graph test case.
Based on these data, we assess the feasibility of each ap-

proach and highlight the intricacies detected. In the end, we
provide recommendations for the best usage scenarios.

2 Approaches
The following section discusses memory managers on the
GPU. All of them offer the standardmalloc/free interface and
operate on a block of memory with a configurable size. All
follow a similar top-level approach of splitting the available
memory into large blocks (mostly fixed size) and use these
large blocks to serve the individual allocation requests. Man-
aging these resources varies from the use of lists, queues or
even hashing. Any performance evaluation is deferred to
Section 4.

2.1 CUDA Allocator
NVIDIA initially introduced its allocator [13] (henceforth
referred to as CUDA-Allocator) as early as 2010 for GPUs
of compute capability 2.0. It implements the standard mal-
loc/free interface and is accessed on a per-thread level. Newer
additions include __nv_aligned_device_malloc, which allo-
cates memory aligned to a non-zero power of two. There
is unfortunately very little information available on the im-
plementation, which only allows for speculation as to its
internal structure. Its major benefit is the usability regardless
of the required allocation size and its thread-based alloca-
tion model. It does not natively support any group-based
allocation procedures and can only be initialized once with
a given size (increasing this memory requires destroying the
current context). Reliability is valued over performance.
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2.2 XMalloc
XMalloc [9] is the first, non-proprietary, dynamic memory
allocator for GPUs, introduced also in 2010. Its main contri-
bution is the coalescing of allocation requests on the SIMD
width for faster, lock-free FIFO queues.

Large allocations (as well as Superblocks) are served from
a heap, which is segmented into free and allocated Mem-
oryblocks, as can be seen in Figure 1. These blocks form a
linked-list, which allows for merging of neighboring blocks.
This type of allocation is relatively slow, as the list of mem-
ory blocks has to be traversed in search of a free Memo-
ryblock. Small allocations are rounded to a statically deter-
mined size and are preferably allocated from a free-list (one
per static size) that holds previously allocated memory areas,
called Basicblocks. Basicblocks (referenced from the first level
buffer) are allocated from Superblocks (referenced in the sec-
ond level buffer). One Superblock is split into 32 Basicblocks.
Both buffers are fixed-capacity, lock-free FIFO arrays, imple-
mented with SIMD-width coalescing. If a free-list is empty,
it is refilled from buffered Superblocks. New Superblocks are
only allocated if the second level buffer is also empty.
Deallocation varies on the different levels. Within a Ba-

sicblock, just corresponding header information is updated,
which might increase internal fragmentation. If a Basicblock
is completely free, it is put into the first level buffer again
if possible, otherwise returned to the parent Superblock. Su-
perblocks andMemoryblocks are freed bymerging with neigh-
boring free blocks of memory.

2.3 ScatterAlloc
ScatterAlloc [17] was introduced in 2012 and addresses the
problem of collisions during allocation by scattering the
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Figure 1. Overview of allocation levels in XMalloc.

allocation requests across its memory regions. To guaran-
tee correctness and avoid deadlocks, ScatterAlloc focuses
on a mostly lock-free design. It keeps the number of data
accesses low to increase memory-access performance and
avoids atomic operations on the same data word whenever
possible. Furthermore, ScatterAlloc also attempts to place
data words close together in memory, which are allocated
by threads within the same block at the same time. Memory
is split into fixed sized pages, free memory within a page is
tracked via a page usage table. Pages are grouped into Super
Blocks, which store additional meta data about their current
allocation status to speedup the allocation within a Super
Block. Super Blocks are of a fixed size and are organized in
a single-linked list. ScatterAlloc is designed such that super
blocks can either reside in one large region or be allocated in-
dividually, allowing for resizing of the manageable memory
area. One can also pass additional memory to ScatterAlloc,
which will then be available at the next kernel launch. Each
page can be split into equally sized chunks, this chunk size is
set at the first allocation from a page. Pages are reusable once
all chunks on it have been freed again. A page usage table is
used to track free chunks within a page. The bit-field used is
32 bit long. To support more chunks per page than possible
with this field, a second hierarchy level is introduced on the
page itself, allowing for a maximum of 1024 chunks per page.

Hashing is used to quickly find new pages and chunks for
allocation. This hash function, as can be seen in Figure 2,
tries to reduce internal fragmentation and improve cache
utilization by incorporating the multiprocessor ID. In case
the current page is already fully used, linear probing is used.
This will still result in local clustering of chunks of the same
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size. There also exist two levels of meta data to speed up the
search for free chunks.
ScatterAlloc keeps a pointer to the currently active Super

Block. Only once this reaches a certain fill level, the next
Super Block in the list is investigated. A Super Block is also
subdivided into equally sized regions. This also increases
the search speed, as a region can be quickly rejected if no
suitable chunk can be found. Data requests, which do not
fit onto a single page, can be served by allocating multiple,
consecutive pages from specially reserved Super Blocks.

2.4 FDGMalloc
FDGMalloc [20] introduces a memory allocator with a focus
on explicit warp-level programming. Their main goal is re-
ducing branch divergence to increase SIMD scalability. They
do not offer a general free mechanic and only allow alloca-
tions at warp-level, reducing its applicability as a general-
purpose memory manager. FDGMalloc organizes its design
in a similar fashion to ScatterAlloc and XMalloc, by utiliz-
ing SuperBlocks, which can be split into smaller chunks of
memory. The main difference is that within FDGMalloc, one
SuperBlock is shared by all threads within a warp. Voting is
used to determine a leader thread, which does all the work to
reduce the number of simultaneous memory requests. Each
warp has its own heap.

All memory requests are organized using theWarpHeader,
as can be seen in Figure 3. It contains a pointer to the fore-
most SuperBlock, as well as a pointer to a list of SuperBlocks
that have been allocated using the CUDA-Allocator . These
lists are of fixed size and are replaced once full. Each list
keeps track of how many SuperBlocks are already allocated
in SB_Counter and each SuperBlock tracks the number of
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Figure 3. Overview of FDGMalloc.

allocations in SB_Allocated. The warp header is allocated
from the CUDA-Allocator and pointers are distributed to all
participating threads. If the total requested size per warp is
larger than the maximum SuperBlock size, then the request
is forwarded to the CUDA-Allocator . Otherwise, the current
SuperBlock is used to allocate the memory. If not all requests
can be satisfied within this SuperBlock, the remaining threads
will once again vote on a leader thread and start allocating a
new SuperBlock, registering it in the SuperBlock list as well.

Deallocation is possible only collectively on a warp-level,
there is no way to free single allocations, only all allocations
of a warp can be freed simultaneously. Furthermore, to make
allocated memory available in successive kernel launches, a
pointer to theWarpHeader has to be stored in global memory.

All in all, FDGMalloc presents a warp-level optimized ap-
proach to dynamic memory allocation with constraints that
do not fit many modern applications, especially focusing
on the independent thread scheduling behavior present on
NVIDIA GPUs since Volta.

2.5 Register Efficient Memory Allocator for GPUs
Vinkler and Havran [19] propose a dynamic memory alloca-
tor based on a circular memory pool, organized as a single-
linked list. Variants of this will henceforth be called Reg-Eff .
The linked list approach is simpler compared to XMalloc, as
only one level of allocations and no caching with buffers is
used. Each allocated chunk of memory also carries header
information (an allocation flag and the offset to the next
chunk) to enable deallocation. Similar to ScatterAlloc, Reg-Eff
pre-splits the memory into many chunks (except that these
chunks need not be uniform in size) to prevent serializing
the allocation from a large, initial block at the beginning.
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This splitting procedure generates a structure similar to a
binary heap, as can be seen in Figure 4. The memory not
used by the heap forms the last chunk.
During allocation, Reg-Eff tries to locate the first free

chunk large enough to hold the allocation, by starting from
the current memory offset, which is stored in a shared vari-
able. Atomic Compare-And-Swap is used to try allocating a
chunk. If a free chunk is large enough according to a max-
imum fragmentation constant, it is split into two chunks
during allocation. After creating the header data for the
new chunk, the memory offset points to the following chunk.
Deallocationmight require merging two neighboring chunks.
This entails trying to allocate the next chunk such that it can-
not be used by another thread. After that, the corresponding
header information for the newly merged chunk is updated.

This design is calledCircularMalloc (Reg-Eff - C), and based
on this, three further variants were proposed. Circular Fused
Malloc (Reg-Eff - CF ) fuses the two header words into one
if less than 231 allocations can be expected. Circular Multi
Malloc (Reg-Eff - CM) and Circular Fused Multi Malloc (Reg-
Eff - CFM) trade fragmentation for speed by introducing
an array of offsets (one for each SM) instead of just one
shared memory offset. This decreases the number of atomic
collisions at an increased fragmentation. Additionally, the
size of the pre-split chunks is divided by the number of SMs.
These smaller heaps are linked in a single-linked list.

2.6 KMA
KMA [15] is built as a two-layermemorymanager for OpenCL,
with a lower-level generic manager providing direct malloc
access as well as a high-level manager for managing dy-
namic data structures. It splits its allocated heap into Su-
perblocks, which themselves are split into smaller, power-of-
two aligned pages.
During allocation, a fitting Superblock is located using

a hash map; if none are available, an empty Superblock is
taken from a free list and initialized. Atomic operations on
the Superblock state are used to reserve a slot and a free block
is located by iterating over the Superblock bitmaps. The free
list itself is built as a lock-free queue according to Michael
et al. [12]. Unfortunately, no source code is available online
and the exclusivity to OpenCL exclude this approach from
further evaluation.

2.7 Halloc
Halloc [1] starts by allocating slabs of 2MB–8MB in its ini-
tialization phase, which can then be assigned to an allocation
size at runtime. The core of Halloc is a bitmap heap with one
bit for each block that can be allocated from the system.
To allocate a free block, a hash function, as noted in Fig-

ure 5, is used to traverse the corresponding bitmap. This
visits all blocks and is fast and scalable, as long as ≤85 % of
the blocks are allocated.Warp-aggregated atomics are used

to modify all counters managing the allocation state. This
selects a leader within a warp and only the leader increments
and broadcasts the results to the threads in their group (up
to 32× less atomics). After that, a corresponding slab is lo-
cated and a free block is searched for using hashing. If no
block was found, a new slab must be found and the head
is moved to this slab. This can affect performance severely,
hence Halloc assigns slabs to classes. Free slabs can switch
between chunk sizes, sparse slabs (≤2 %) can switch between
block sizes within the same chunk and busy slabs (>60 %)
are normally not used during head search, except when no
other blocks are available anymore. Head replacement also
starts early (fill level > 83.5 %) to reduce this impact.
Deallocation first locates the corresponding slab for a

pointer and then updates all counters. This can result in
a slabs moving to a new class for very sparse slabs or in
marking a slab as free, which takes more time. Allocations
larger than 3 KiB are relayed to the CUDA-Allocator .

2.8 DynaSOAr
DynaSOAr [16] deals with the problem inherent with object-
oriented programming on the GPU, which is the suboptimal
memory layout once objects are layed out in memory as
an array of structures (AOS). They propose a fully-parallel,
lock-free dynamic memory allocator, a DSL-style data layout
as well as a do-all operation on this data. This essentially lays
objects out in a structure of arrays (SOA) layout, drastically
improving memory access performance, trading memory
access speed for allocation speed. As such, it cannot be used
as a general-purpose memory manager, as only objects, pre-
defined in their data layout, can be allocated.

ቐ
ℎ 𝑐, 0 = 𝑏 ∙ 𝑐/𝐾 ∙ 𝐾𝑇 + 𝑐 mod 𝐾 mod 𝑁

ℎ 𝑐, 𝑖 = ℎ 𝑐, 0 + 𝑖 + 1 ∙ 𝑖 + 1 𝑏𝑆 mod 𝑠 mod 𝑁

initial chunk to try

#chunks in block (1-8)

T is prime (7, 11, 13)
reduces collisions

Halloc Hash Function

Halloc Design

2-8 MiB

1 1 0 0 1

2 0 0 0 1

pre-allocated
at beginning

alloc_ctrsize head

16 123

12

1025000

0

0

… … …

… …

24

32

48

64

None

None

chunk_sz

block_sz

memory

bitmap

alloc_sizes

slab_ctr 1234

32

16

K=1-8 → better coalescing 
for small blocks

#chunks in slab
(multiple of b)

Subsequent chunks to try
In practice faster than linear hashing

Visit all blocks with right choice of b, S and s

allocation counter
(per size)

Figure 5. Overview of Halloc.

223



PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Winter et al.

2.9 Throughput-oriented GPU Memory Allocation
BulkAllocator [7] introduces the bulk-semaphore, a throughput-
oriented synchronization primitive (Bulk Semaphore), as well
as two allocators. The bulk semaphore enables preemptive
batch allocation, reducingwait times for the allocating threads.
This is a crucial part of both allocators.

The Unaligned Allocator (UAlloc), which closely resembles
existing concurrent CPU allocators, is used for all allocations
smaller than 2 KiB. A Tree Buddy Allocator (TBuddy) is used
for all allocations larger than that. The bulk-semaphore is
used throughout as the synchronization primitive. TBuddy
is modeled as a static binary tree, tracking the state of large
memory blocks. Each level in the tree is secured by a Bulk
Semaphore, each node can be either busy, partial or avail-
able. Node status changes are propagated from node to par-
ent. To ensure consistency, both node and parent are locked.

UAlloc uses onememory arena per SM, handling chunks of
512 KiB which are further sub-divided into 4 KiB bins (static
size per bin). Each arena keeps a per-size list of bins with
available elements. The first two bins in a chunk track the
allocation state of a chunk. New bins are allocated from a
chunk in the chunk list, new chunks are allocated by using
TBuddy. To update the bin free-list, they use Read-Copy-
Update [11] as their synchronization mechanism.

They test allocation sizes between 8 B and 512 KiB, report-
ing increased performance over the CUDA-Allocator for all
tested allocation sizes except for 2 KiB, 4 KiB, 64 KiB and
128 KiB. Unfortunately, even after contacting the authors, no
public version is available for further testing and replication
is challenging due to architecture specific details.

Bulk SemaphoreOrder N-1

Bulk SemaphoreOrder N-2

Bulk SemaphoreOrder N-3

Tree Buddy Allocator

UnAligned Allocator

Partial
Available

Busy

SM Assigned Arena

Chunk List

Bin0 Bin1 Bin2 Bin3

Bulk Semaphore RCU

Bin Bin Bin

Chunk

Bin

Free Counter

RCU Queue

Meta-Data

Data
3968 Bytes

Mutex

Tails

1
2

8
 B

ytes

4 KiB 512 KiB

Figure 6. Overview of the BulkAllocator .

2.10 Ouroboros
Ouroboros [21] extends the queueing concepts and memory
manager found in faimGraph [22] and instantiates one queue
per supported page size. The manageable memory area is
split into equally-sized chunks (per default this is 8 KiB),
as can be seen in Figure 7. Each queue can either manage
pages directly or chunks with free pages. This results in
two basic queue types: a page-based queue (Ouro-S-P) and
a chunk-based queue (Ouro-S-C). The page-based queue is
fast and efficient, but lacks the reusability of chunks once
they have been assigned to a page size. The chunk-based
queue trades allocation speed for memory efficiency. It has
a two-stage access design (allocate from chunk in queue)
but can efficiently reuse empty chunks for all purposes. One
drawback of these two queues is their memory requirements,
as both need static space, which has to be large enough to
hold the largest expected number of free pages/chunks.

To reduce the static memory requirements, Ouroboros vir-
tualizes the queues by shifting the queue storage from a
static region onto dynamic chunks. Two variants are intro-
duced, one using a small chunk pointer array to reference
the chunks currently allocated to the virtual queue (called
virtualized array hierarchy queue, shorthand Ouro-VA-P and
Ouro-VA-C). The other version gets rid of this chunk pointer
array altogether in favor of pointers to the beginning and end
of the virtual queue (called virtualized linked-chunk queue,
shorthand Ouro-VL-P and Ouro-VL-C). Multiple instances of
Ouroboros (with different page size ranges) can be instanti-
ated simultaneously to allow for larger allocation sizes, oth-
erwise larger allocations are relayed to the CUDA-Allocator .
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3 Framework
As part of this survey, we provide our complete test frame-
work as well as an interface to all tested memory managers.
This includes CUDA-Allocator , XMalloc, ScatterAlloc, Hal-
loc, Reg-Eff and Ouroboros. FDGMalloc is also included, but
crashes in most test scenarios, hence it was omitted for the
final evaluation. All frameworks, except for Ouroboros and
the CUDA-Allocator , are configured to generate code for the
pre-Volta architecture, as they rely on warp-synchronous
behavior to function correctly. Each memory manager is
instantiated on the host with a configurable size of the man-
ageable memory. This memory manager can then be passed
to device kernels and offers the standardmalloc/free interface.
Using this framework, one can integrate a memory manager
into an existing project and simply swap out one declaration
to change between memory managers, allowing for a sim-
ple benchmarking setup. The full testsuite (including results
for the NVIDIA TITAN V and NVIDIA RTX 2080Ti) can be
found on GitHub.

4 Evaluation
All performancemeasurementswere conducted on anNVIDIA
TITAN V (12 GB V-RAM) and an Intel Core i7-7700 with 32
GB of RAM and took around 600 h (roughly 3 1

2 weeks) to
complete. Additional results on an NVIDIA RTX 2080Ti (11
GB V-RAM) can be found on GitHub. The framework is
CMake-based and runs both on Linux and Windows. All
given results were captured on Linux with gcc 8.2.1 using
NVIDIA CUDA 10.2. Not all tested frameworks also work
correctly with independent thread scheduling behavior in-
troduced with the Volta generation of NVIDIA cards [14].
For these, we pass compute_60 to the compiler to enforce
warp-synchronous execution.

All frameworks were setup with 8GB of manageable mem-
ory. Only the out-of-memory testcase was initialized with
2GB for reduced run times. Variants of Reg-Eff were built
with warp-coalescing turned off, as this did not work for
any of the testcases. We use as a baseline a simple memory
manager built on atomics on a shared offset (referred to as
Atomic), but this is no true memory manager due to the lack
of deallocation. Reg-Eff includes a simple memory manager
(referred to as Atomic) just building on atomics on a shared
offset, this is used as a baseline when applicable. We use
a consistent color scheme throughout all plots to save on
space, this color map can be seen in Figure 8. Due to page
limitations, we only show a subset of all captured results in
the paper, all plots (except for Figure 9e and Figure 9f, which
were captured on the NVIDIA RTX 2080Ti) show evaluation

results from the NVIDIA TITAN V. The full set of plots can
be found in the Appendix and on GitHub.

4.1 Initialization & Register Requirements
Evaluating initialization performance, the CUDA-Allocator
only sets its size limit and hence is clearly fastest (≤ 0.05ms),
followed byAtomic and standard variants ofOuroboros (∼6ms).
All other approaches are close in initialization performance
(30ms–40ms), except for Halloc, which is on about 5.5×
slower compared to the average initialization time.
We also evaluate register requirements for malloc and

free respectively. The respective malloc implementation re-
quires more registers than free for all approaches. The four
variants of Reg-Eff , as suggested by the paper title, use the
least amount of registers both formalloc and free, closely fol-
lowed by the CUDA-Allocator .Halloc and ScatterAlloc require
around 40 registers for malloc and between 20-30 registers
for a call to free.Ouroboros is slightly more resource intensive
for the malloc case, with around 50 registers for the chunk-
based approaches and around 40 registers for the page-based
counterparts, while free is similar to Halloc and ScatterAlloc
with slightly more than 20 registers. Only XMalloc shows a
very large discrepancy between malloc (168) and free (24).

4.2 Allocation Performance
To evaluate allocation performance, we investigate three
different scenarios, all tested on the range 4 B–8192 B:

• Allocation performance (thread/warp-based)
• Allocation performance for mixed sizes (thread-based)
• Performance scaling for varying numbers of threads
for powers of two between 20 - 220

4.2.1 Allocation Performance for Allocation Size
We test 10.000 and 100.000 allocations in the range between
4 B–8192 B. Figure 9 shows the resulting performance plots
for thread-based allocations as well as for warp-based alloca-
tions (one thread per warp allocates). Results obtained on the
NVIDIA RTX 2080Ti follow the overall trend as evaluated
on the NVIDIA TITAN V, as can be seen when comparing
Figure 9c & Figure 9e and Figure 9d & Figure 9f. Henceforth
we will showcase results only from the TITAN V for sake of
brevity (full results can be found on GitHub).

The performance results suggest that the CUDA-Allocator
also has some larger, divisible unit that can be split into
smaller sizes. This is clearly visible in the characteristic stair-
case pattern visible for both allocations and deallocations.
Furthermore, it seems it has more than one size for this unit,
as there is a clear split in performance right before 2048 B.
CUDA-Allocator also is the only approach with deallocation

CUDA Halloc Ouro - C 
- S

Ouro - C 
- VA 

Ouro - C 
- VL

Ouro - P 
- S

Ouro - P 
- VA

Ouro - P 
- VL

Atomic Reg-Eff 
- C

Reg-Eff 
- CF

Reg-Eff 
- CFM

Reg-Eff 
- CM

ScatterAlloc XMalloc

Figure 8. Color scheme used henceforth for all tested approaches.
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(a) [Titan V] Thread-based allocation performance 10K
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(b) [Titan V] Thread-based deallocation performance 10K

0.001

0.01

0.1

1

10

100

1000

10000

4
30

8
61

2
91

6
12

20
15

24
18

28
21

32
24

36
27

40
30

44
33

48
36

52
39

56
42

60
45

64
48

68
51

72
54

76
57

80
60

84
63

88
66

92
69

96
73

00
76

04
79

08

m
s

Bytes

(c) [Titan V] Thread-based allocation performance 100K
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(d) [Titan V] Thread-based deallocation performance 100K
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(e) [2080Ti] Thread-based allocation performance 100K
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(f) [2080Ti] Thread-based deallocation performance 100K
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(g) Warp-based allocation performance 10K
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Figure 9. Thread-based allocation/deallocation performance for 10 000 (9a and 9b on the NVIDIA TITAN V) as well as for
100.000 (9c and 9d on the NVIDIA TITAN V and 9e and 9f on the NVIDIA RTX 2080Ti) allocations for the range 4 B–8192 B,
as well as warp-based allocation performance for 10.000 (9g) allocations and mixed allocation for 100.000 (9h) allocations in
the range 4 B to 4 B–8192 B (4 B–4 B, 4 B–8 B, · · · , 4 B–8192 B).
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performance consistently above 1ms. ScatterAlloc performs
best (staying even close to the atomic baseline) until it has
to start searching for contiguous free blocks, resulting in a
steep drop in performance at around 2048 B. Performance
for Ouroboros is double-edged. The chunk-based variants are
considerable slower than ScatterAlloc, but outperform the
CUDA-Allocator up to its unit split. The page-based variants
are very close in performance to ScatterAlloc for smaller
sizes, but considerably outperform all other approaches for
larger sizes. Halloc performs well until its hand-off to the
CUDA-Allocator . Reg-Eff does not perform well with thread-
based allocation methods. This is not helped by the problem
that warp-coalescing (which would allocate one large allo-
cation for all allocation requests within a warp) does not
complete any of the testcases, as there seem to be problems
with deleting parts of this larger allocation. XMalloc falls in
between CUDA-Allocator and Halloc performance-wise, but
is unstable, only being able to finish the testcase for 10.000.
Warp-based allocation changes the picture somewhat, as

can be seen in Figure 9g, in that Ouroboros slows down a
little, while Reg-Eff gains some performance. Interestingly,
the CUDA-Allocator also sees a change in performance, but
mainly reducing the range of performance fluctuation.Halloc
now outperforms page-based Ouroboros for allocations ≤

1024 B and the two Multi-Reg-Eff variants also start strong,
but have an issue with repeated allocations/deallocations,
slowing down significantly over time. Overall, the choice
still remains between ScatterAlloc and page-based Ouroboros.

4.2.2 Mixed Allocation Performance
This testcase tries to highlight performance numbers during
mixed allocation, i.e. if different allocation sizes are allocated
during one kernel call. To evaluate this, each thread requests
an allocation from a certain range of available sizes. The
lower bound is 4 B, while the upper bound ranges between
4 B–8192 B, a value is randomly chosen in this range. Once
again, we look at 10.000 as well as 100.000 allocating threads,
allocation performance for 100.000 is shown in Figure 9h.

Considering smaller allocation ranges, ScatterAlloc clearly
performs best once again, followed by Halloc and page-
based Ouroboros. After increasing the range to 4 B–1024 B,
page-based Ouroboros clearly shows its strength. The CUDA-
Allocator shows its characteristic spike at 2048 B, after which
performance increases again.

4.2.3 Performance Scaling
To assess performance scaling, we test the range of 4 B–
8192 B and vary the number of threads between 20 - 220.
Four examples are shown in Figure 10a to Figure 10d.
The CUDA-Allocator shows a similar pattern over the

whole range, staying relatively flat up until 1000 threads
and then slowly increase for increasing numbers of threads.
Halloc, ScatterAlloc as well as page-based Ouroboros remain
flat for one order of magnitude longer, but especially increas-
ing allocation sizes decrease performance for bothHalloc and
ScatterAlloc, while page-based Ouroboros shows a consistent
profile over the full range.

Reg-Eff shows an unusual pattern as it starts decreasing in
performance much earlier compared to the other approaches,
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Figure 10. Allocation performance scaling for 16 B, 64 B, 512 B and 8 KiB (10a - 10d), as well as deallocation performance
(10e - 10h).
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Figure 11. Fragmentation testcase reporting the address range returned after 100.000 allocations (11a), out-of-memory testing
for various sizes (11b), two synthetic workload testcases with 4 B–64 B (11c) and 4 B–4096 B (11d) per thread (Baseline uses
Thrust prefix-sum). We also compare write performance to allocated memory to the Baseline for the range 16 B–128 B (11e)
and initializing a graph (11f) and inserting 100.000 edges (11g) focused on a small range of source vertices.

even for small thread counts, as can be seen in Figure 10a
and Figure 10b. Figure 10d shows the performance discrep-
ancy between page-based Ouroboros and all other variants
very clearly for larger allocation sizes. Considering dealloca-
tion performance in Figure 10e to Figure 10h, performance
is much more homogeneous, as there is little difference be-
tween different allocation sizes. The CUDA-Allocator once
again is left behind and for smaller allocation sizes, there
exist a small performance gap between Ouroboros and the
other approaches, which closes for larger allocation sizes.

4.3 Fragmentation
We consider two testcases to evaluate fragmentation. We
explore fragmentation during allocations of different sizes
and efficient memory usage with an out-of-memory testcase.

4.3.1 Fragmentation Range Testcase
To assess fragmentation from outside the allocators, we track
the maximum address range for a number of allocations as
well as the maximum address range after 100 iterations of
allocations and deallocations. The former result can be seen
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in Figure 11a. CUDA-Allocator always reports back the maxi-
mum possible range, which might suggest that it starts allo-
cating from both ends of its memory region. The same is true
for XMalloc (which crashes early unfortunately). Ouroboros
stays close to the baseline and shows the best utilization,
given its alignment to powers of two. Halloc comes second,
followed by ScatterAlloc and then Reg-Eff .

4.3.2 Out-Of-Memory Testcase
This testcase performs allocations until either out-of-memory
is reported by the system or an allocator did not finish within
an hour of runtime. Figure 11b reports how often such an
allocation with 100.000 threads was possible as a ratio of the
maximum number of iterations possible given the memory
size. The alignment of 16 B is clearly visible here, as all ap-
proaches report increased utilization between 4 B up to 16 B.
Ouroboros clearly shows the best utilization, with 98 % or
higher for all variants after 16 B. ScatterAlloc comes second,
even reaching full utilization halfway through the test case.
Halloc cannot reach full potential for larger sizes, as these
are directed towards the CUDA-Allocator .
For smaller sizes, it comes close to 75 %, which is due to

marking chunks as busy early and the reduced memory size
due to the split with the CUDA-Allocator . CUDA-Allocator
as well as Reg-Eff do not finish but are reigned in by the
one hour mark (the other approaches typically finish each
test case in less than a minute), as both approaches slow
down with an increasing number of allocations. XMalloc
has problems with stability, returning various violations if
memory is not freed.

4.4 Real-World Performance
We evaluate three real-world test scenarios: work generation,
graph initialization as well as updating a dynamic graph.

4.4.1 Work Generation
This test case emulates a real-world example of a set of
threads producing work. The memory manager performance
can then be compared to the canonical approach of using a
prefix-sum plus allocation from the host.
We test two different ranges, 4 B–64 B (as can be seen in

Figure 11c) of work generated per thread as well as 4 B–
4096 B (in Figure 11d). We launch an increasing number of
threads and also compare to the Baseline built on a prefix-
sum from Thrust. For the smaller range, as in Figure 11c,
only ScatterAlloc is able to consistently outperform the Base-
line, Halloc also stays very close over this range. Page-based
Ouroboros shows similar performance up to a few thousand
threads and then falls slightly behind, with all other ap-
proaches considerably slower. For the larger range, as in
Figure 11d, Halloc slows down, with only ScatterAlloc and
page-based Ouroboros outperforming the Baseline up to tens
of thousands of threads.

4.4.2 Memory Access Performance
On the GPU, not only allocation speed but also memory ac-
cess speed is crucial. To evaluate whether a memory allocator
considers alignment, we test the uniform and mixed case
with 217allocations between 16 B–128 B. Each thread reads
and writes to its assigned memory. As shown in Figure 11e,
Ouroboros stays closest to the fully coalesced baseline, closely
followed by XMalloc, ScatterAlloc and Halloc. Reg-Eff and
the CUDA-Allocator show poor access times.

4.4.3 Graph Initialization
We test graph initialization performance for a set of graphs
taken from the DIMACS10 graph data set [2]. Each adjacency
is aligned to a power of two and the results can be seen
in Figure 11f. CUDA-Allocator performs worst in all scenar-
ios, followed by the variants of Reg-Eff and chunk-based
Ouroboros. Halloc and page-based Ouroboros perform simi-
larly, once again beaten by ScatterAlloc, as most graphs are
sparse and require many small allocations.

4.4.4 Graph Updates
We also consider updating the graph. As soon as an exist-
ing adjacency crosses over a power of two barrier during
the allocation change, we allocate a new adjacency and free
the old adjacency. We test two different scenarios, uniform
updates as well as updates focused on a range of source ver-
tices, to simulate more update pressure, which can be seen in
Figure 11g. This testcase also highlights the ability for con-
current allocations and deallocations. Once again, the CUDA-
Allocator takes the most amount of time, followed by Reg-Eff
and then chunk-based Ouroboros. Page-based Ouroboros, Hal-
loc and ScatterAlloc all perform equally well in this case.

5 Discussion
Based on our detailed evaluation in Section 4, we provide a
short discussion on the merits of each tested approach.
The CUDA-Allocator offers a reliable option with a small

register footprint. It works for any size and has very consis-
tent performance, showing virtually no difference between
mean and median performance. Unfortunately, its perfor-
mance is comparatively weak overall, being consistently
outperformed by all approaches for smaller allocations (up
to around 2048 B, where its split is occurring) and only alloca-
tions larger than that favor it against a few other approaches.
Furthermore, performance continuously increases with the
amount of allocations and also appears to be dependent on
the size of the manageable memory. Increasing this memory
area is possible only by destroying the current context.

XMalloc is held back by its age, as it is not stable and fails
most test cases, especially for larger allocation counts and
mixed allocation sizes. It also represents an outlier in register
footprint, which decreases its suitability even further.
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ScatterAlloc is a very efficient dynamic memory manager
with a clear focus on small allocations (performs clearly
best for allocations ≤ 512 B and is competitive up to 2048 B).
This also makes it the clear choice for any operation largely
focused on smaller allocations, like the smaller synthetic
workload case shown in Section 4.4.1. Larger allocations lag
behind a bit and memory fragmentation also is not great due
to scattering of memory accesses. Furthermore, increased
thread contention affects ScatterAlloc more than others. Scat-
terAlloc is also very stable and can increase its manageable
memory size at runtime. It also performs equally well for
thread-based and warp-based allocations.
Halloc performs well until the point where it hands off

to the CUDA-Allocator , staying reasonably close to page-
based Ouroboros and ScatterAlloc for smaller allocations. It
is clearly optimized towards warp-based allocations (outper-
forming page-based Ouroboros in this case), as thread-based
performance is third best in the testset, but clearly behind
the first two. It also splits its memory into two sections to
accommodate larger allocations with the CUDA-Allocator
and sacrifices some memory for increased performance, but
performs second best when it comes to pure fragmentation.

Reg-Eff comes in four different variants and shines when it
comes to resource requirements, requiring the least amount
of registers of all approaches. Unfortunately, performance is
a mixed bag, with a large discrepancy between thread-based
and warp-based performance (clearly favoring warp-based)
and also very inconsistent performance, leading to signif-
icant differences between mean and median performance.
Similar to the CUDA-Allocator , performance drops for in-
creased saturation of the memory pool and fragmentation
also is not great. Furthermore, not all variants are entirely
stable and also none of them do return 16 B aligned memory,
leading to issues with vector operations.
Ouroboros offers six variants of its allocator, which all

excel when evaluating memory usage and fragmentation,
but differ when it comes to performance. Its chunk-based
variants outperform the CUDA-Allocator for allocations ≤
2048 B, but fall behind for larger allocations due to their
two-stage access design. Page-based Ouroboros shows best
performance overall, especially when considering thread-
based allocations. Overall, Ouroboros favors thread-based
allocations. It also shows some difference between mean
and median performance, as re-use is drastically faster than
allocating from an empty queue initially. Multiple instances
can be stacked to allow for larger allocation sizes.

6 Conclusion
In this paper, we surveyed currently available dynamic mem-
ory managers on the GPU. We provide a test framework,
which includes all evaluated memory managers with a con-
sistent interface for straightforward integration into existing
projects. Our evaluation leads to the following conclusions:

• Thread-based Allocation
– If an application mainly requires small allocations
(≤ 512 B), ScatterAlloc is the clear choice with Halloc
and the page-based Ouroboros staying close.

– Larger allocations (≤ 2048 B) favor Ouroboros, fol-
lowed by Halloc, CUDA-Allocator and ScatterAlloc.

– Overall, page-based Ouroboros performs best, fol-
lowed by ScatterAlloc,Halloc and theCUDA-Allocator .

• Warp-Based
– ScatterAlloc performs best up to 4096 B
– Halloc also improves its performance, outperforming
page-based Ouroboros up to 1024 B

– Page-based Ouroboros still is the best overall per-
former over the full tested range

• If fragmentation and memory utilization is of utmost
concern, Ouroboros is the clear choice with Halloc a
distant second.

• If register footprint is most important, then choosing
one of the variants of Reg-Eff might be sensible, but
only if warp-level programming is used.

• If changes to themanageablememory size are required,
then only ScatterAlloc and Ouroboros are suitable.

• Only theCUDA-Allocator andOuroboros currentlywork
on the newer GPU architectures with independent
thread scheduling.
– This may be crucial if support for warp-synchronous
execution is dropped in future versions of CUDA.

– This also currently limits any application usingXMal-
loc, ScatterAlloc, Halloc, Reg-Eff or FDGMalloc, as it
would have to enforce warp-synchronous execution
globally.

Considering the canonical example of work generation dur-
ing a kernel, we showed that most approaches perform bet-
ter than the canonical prefix-sum for smaller thread counts
while ScatterAlloc, Halloc and page-based Ouroboros are a
good choice even for large thread counts. We also showed
that mature approaches like ScatterAlloc and Halloc still per-
form comparatively well, but that newer approaches, like
Ouroboros, can leverage new hardware capabilities to both re-
duce fragmentation and increase performance, as it becomes
less important to scatter memory accesses for increased per-
formance. Overall, considering our evaluation, performance
worries with dynamic memory management on the GPU
are exaggerated, as many approaches provide compelling
performance with a straightforward usage model similar to
CPU programming.
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A Artifact Description Appendix
A.1 Abstract
The following appendix provides all necessary information
to download the framework used to evaluate all memory
managers, rerun the experiments as well as access the full
results acquired on the NVIDIA TITAN V as well as from
the NVIDIA RTX 2080Ti.

A.2 Description
A.2.1 How the software can be obtained
The framework is downloadable from Zenodo and exists also
as a GitHub repository.

A.2.2 Hardware dependencies
The framework was tested on an Intel Core i7-7700 as well
as an Intel Core i7-8700X, with 32 GB RAM respectively.
We also tested different cards from NVIDIA, including the
GTX 1080Ti, the TITAN V as well as the RTX 2080Ti (the
repository includes results for the TITAN V as well as the
2080Ti).

A.2.3 Software dependencies
The framework was tested on Windows 10, Arch Linux
<5.9.9> as well as Manjaro <5.4>.

• C++ compiler
– Tested with gcc-9, gcc-10 as well asmsvc 16.8.X

• CUDA Toolkit
– Tested with 10.1, 10.2, 11.0 and 11.1

• CMake
– Tested with ≥3.16

• Python
– Tested with ≥3.8
– Requires package argparse

• Boost
– Tested with 1.66 and 1.74

• Git

A.2.4 Datasets
Graphs for the real world testcases can be downloaded from
the SuiteSparse Matrix Collection.

A.3 Installation
To install the framework, first make sure all the require-
ments are installed and configured correctly (this includes
setting the path to the boost install location on Windows in
BaseCmake.cmake).

• Setup
– Option A
∗ Download archive from Zenodo, extract it and call
the following commands in the top-level directory:
· git submodule init
· git submodule update

– Option B
∗ Clone respository from GitHub, pass the option
--recursive and choose branch AEsubmission

• Call python init.py
• Install
– Use the Developer PowerShell on Windows
– Option A:
∗ To build all tests at once, call

· python setupAll.py --cc XX
· cc → Compute capability (tested 61, 70 and 75)

– Option B:
∗ To build each testcase individually, locate setup.py
in each testfolder and call
· python setup.py --cc XX
· cc → Compute capability (tested 61, 70 and 75)

A.4 Experiment workflow
Since running the whole testsuite takes quite a long time (≥
600h) for a full run, the framework also includes a script to
run a smaller, representative testsuite. To run this, simply
call

• python testAll.py -mem_size X -device Y -runtest
-genres
– The memory size is given in GB
– The device ID is an integer (0 is the default device)

To run individual commands, please take a look at the
README.md file found in the top-level directory, which de-
scribes each testcase as well as all parameters that can be
changed and which format is expected. Example commands
are listed in Table 2.

A.5 Evaluation and expected result
All commands required to reproduce all results featured
in this paper can be found in Table 2. Running these com-
mands will generate .csv files similar to those found in
results/TITANV or results/2080Ti. Generating the plots
unfortunately is not automatized, each of those results fold-
ers also holds all .xlsx files used to generate the plots found
in the paper. One can copy over newly generated results into
the corresponding Excel file to also generate the plots. The
README.md file as well as Table 2 also reference which script
produces results for which plot found in the paper.

A.6 Experiment customization
Each of the listed testcases (see Table 2) can be modified in
many different ways, an exact listing with all options can be
found in the README.md file. All testcases have a few options
in common:

• -t o+s+c+h+r+x
– One can select per testcase which framework should
perform the testcase, each is selected by the first
letter of the approach and multiple approaches are
chained using the + symbol.
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Figure/Section Folder Script Command

- All folders Common to all
All files end in .py

-t o+s+h+c+r+x -device 0 -allocsize 8
-runtest -genres -timeout 120

Section 4.1 synth_tests test_registers python test_registers.py <...>

Section 4.1 synth_tests test_synth_init python test_synth_init.py <...>

Figure 9c &
Figure 9d alloc_tests test_allocation

python test_allocation.py -num 100000
-range 4-8192 -iter 100 -timeout 120 <...>

Figure 9g alloc_tests test_allocation
python test_allocation.py -num 10000

-range 4-8192 -warp -iter 100 -timeout 120 <...>

Figure 9h alloc_tests test_mixed_allocation
python test_mixed_allocation.py -num 100000
-range 4-8192 -iter 100 -timeout 120 <...>

Figure 10a -
Figure 10h alloc_tests test_scaling

python test_scaling.py -threadrange 0-20
-byterange 4-8192 -iter 100 -timeout 300 <...>

Figure 11a frag_tests test_fragmentation
python test_fragmentation.py -num 100000
-range 4-8192 -iter 100 -timeout 60 <...>

Figure 11b frag_tests test_oom
python test_oom.py -num 100000 -range 4-8192

-timeout 3600 -allocsize 2 <...>

Figure 11c synth_tests test_synth_workload
python test_synth_workload.py -range 4-64

-threadrange 0-20 -iter 100 -timeout 300 <...>

Figure 11d synth_tests test_synth_workload
python test_synth_workload.py -range 4-4096

-threadrange 0-20 -iter 100 -timeout 300 <...>

Figure 11e synth_tests test_synth_workload
python test_synth_workload.py -range 4-4096
-threadrange 0-20 -iter 100 -timeout 300

-testwrite <...>

Figure 11f graph_tests test_graph_init
python test_graph_init.py -timeout 600

-configfile config_init.json

Figure 11g graph_tests test_graph_update
python test_graph_update.py -timeout 600
-configfile config_update_range.json

Table 2. All testcases have a few parameters in common (which are ommited in the table to save space and denoted by
<...> for each script). This includes the device selection (-device 0) and the managable memory size for each memory
manager (allocsize 8, given in GB, all started with 8GB, except for out-of-memory testcase, which is started with 2GB).
For each test script one can also select which approaches to test, given by the initial letter of the approach, chained together
using the + symbol (to run all, pass -t o+s+h+c+r+x). To run a test, generating new results, pass the option -runtest and to
aggregate all individual results into one file, pass the option -genres. Both can be combined, which will run the tests first
and the aggregate the results into one file. One can specify a timeout for each individual run of a testcase (pass -timeout 60,
given in seconds), after which the process will be killed by the OS. Details for each testcase can be found in README.md.

• -runtest
– Runs the testcase for the selected approaches and
generates new results

• -genres
– Collects produced results and aggregates them in
one file

• -timeout 60
– Kills an individual testcase after so many seconds

• -device 0
– Selects which device to use

• -allocsize 8
– Specifies the size of the manageable memory per
approach in GB
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