
The Camera Offset Space: Real-time Potentially Visible Set
Computations for Streaming Rendering

JOZEF HLADKY and HANS-PETER SEIDEL,Max-Planck-Institut für Informatik
MARKUS STEINBERGER, Graz University of Technology

Fig. 1. A birds-eye view on a full 360 degree potentially visible set (PVS) computed for a region around the camera from four reference views (in the corners) in
an outdoor scene. Geometry labeled as invisible shown in magenta color, the red dot shows camera position in the scene. To construct the PVS, we collect all
triangles that can cover a fragment in a per-fragment list and resolve the visibility in the proposed camera offset space. Each reference view contains a corner
inset depicting its corresponding PVS—starting from top right, clockwise: North, East, South and West. The final PVS is constructed by joining these 4 sets.
Novel views rendered with the PVS for view points around the reference location are complete and hole free.

Potential visibility has historically always been of importance when render-
ing performance was insufficient. With the rise of virtual reality, rendering
power may once again be insufficient, e.g., for integrated graphics of head-
mounted displays. To tackle the issue of efficient potential visibility compu-
tations on modern graphics hardware, we introduce the camera offset space
(COS). Opposite to how traditional visibility computations work—where
one determines which pixels are covered by an object under all potential
viewpoints—the COS describes under which camera movement a sample
location is covered by a triangle. In this way, the COS opens up a new set of
possibilities for visibility computations. By evaluating the pairwise relations
of triangles in the COS, we show how to efficiently determine occluded
triangles. Constructing the COS for all pixels of a rendered view leads to a
complete potentially visible set (PVS) for complex scenes. By fusing triangles

Authors’ addresses: Jozef Hladky, jhladky@mpi-inf.mpg.de; Hans-Peter Seidel,
hpseidel@mpi-sb.mpg.de, Max-Planck-Institut für Informatik, Saarland Informatics
Campus, Campus E 1 4, 66123, Saarbrücken, Germany; Markus Steinberger, Graz Uni-
versity of Technology, Inffeldgasse 16/II, 8010, Graz, Austria, steinberger@icg.tugraz.at.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/11-ART231 $15.00
https://doi.org/10.1145/3355089.3356530

to larger occluders, including locations between pixel centers, and consider-
ing camera rotations, we describe an exact PVS algorithm that includes all
viewing directions inside a view cell. Implementing the COS is a combination
of real-time rendering and compute steps. We provide the first GPU PVS im-
plementation that works without preprocessing, on-the-fly, on unconnected
triangles. This opens the door to a new approach of rendering for virtual
reality head-mounted displays and server-client settings for streaming 3D
applications such as video games.

CCS Concepts: • Computing methodologies→ Visibility; Rasterization;
• Theory of computation → Massively parallel algorithms.

Additional Key Words and Phrases: Visibility, Potentially Visible Set, Stream-
ing Rendering, Virtual Reality, Real-time Rendering, GPU

1 INTRODUCTION
In real-time graphics, we face an ever-increasing demand for more
processing power, as the video game industry aims to provide photo-
realistic real-time 3D visuals, pushing current graphics processing
units (GPUs) to the limit. The rising popularity of thin, lightweight,
untethered devices, like head-mounted displays (HMDs) for virtual
reality (VR) applications or smartphones and tablets for gaming adds
further constraints. These devices operate with limited resources
(voltage/on-device memory/processing power) in comparison to
workstation and server-grade hardware.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356530

231:2 • Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger

Client

Server

Decoding Rendering

triangles

camera

Potentially
Visible Set

Object Space
Shading

Encoding

head
movement

image

Fig. 2. Our streaming rendering pipeline is split between a server and a
client device. The server performs a real-time PVS computation, object
space shading and encoding of the data. The client takes the preshaded
PVS triangles and synthesizes novel views with high frame rates. In this
paper we focus on the PVS computation (shown in yellow).

Especially in VR, compute power is crucial. In order to provide
an immersive VR experience while using an HMD, an application
must provide high visual fidelity at very high framerates in high
resolutions for both eyes. Should the application lack responsiveness,
immersiveness degrades and motion sickness can occur. As such, VR
applications on untethered HMDs are among the most demanding
and most constrained use cases for 3D rendering.

To compensate for the low compute power of untethered HMDs,
the HMDs can be combined with a remote server, e.g., in a cloud or
a Wi-Fi connected desktop computer. However, Wi-Fi connections
increase the rendering latency by up to 100ms, and wide-area con-
nections up to 200ms [Huang et al. 2012]. In combination with the
previously outlined challenges, untethered HMDs form a very chal-
lenging streaming rendering problem, in which a powerful machine
(server) streams content to a device (client).

While image-based rendering techniques are usually used for
streaming rendering [Shi and Hsu 2015], they cannot faithfully
handle disocclusion, high-frequency information, and large depth
discontinuities—especially when latency increases. To overcome
these issues, we opt for a split rendering pipeline, illustrated in Fig. 2:
A server preprocesses and shades those triangles potentially needed
for rendering in the near future on the client. Using these data, the
client independently creates renderings for the current HMD view.
This approach entails a series of new challenges:

(1) The server needs to identify which triangles may potentially
be needed by the client considering the system’s current state,
the current view of the user, and potential user movement.

(2) The server needs to provide shading information for all tri-
angles that may become visible under any user movement
before the next shading information is received.

(3) The transmitted data, which may bear little resemblance with
a video stream, must be encoded efficiently for transmission.

(4) The client must be able to generate high quality views from
the available data, considering moving objects and appear-
ance changes due to different viewing angles.

While solutions to all challenges are necessary, in this paper we
focus on challenge (1), which describes a variant of the classical
potentially visible set (PVS) problem: identifying all objects (or trian-
gles) that may become visible under a given set of user movements.

Working on individual triangles instead of objects reduces the band-
width required for transmission. The traditional approach to this
problem has been preprocessing, for which the entire scene is sub-
divided into viewing cells and the visible objects for each cell are
determined and stored [Cohen-Or et al. 2003]. Such an approach is
only feasible for static scenes and usually works only on entire ob-
jects with relatively large viewing cells. With the goal of minimizing
the number of shaded and transmitted triangles while considering
dynamic environments, we propose an approach to real-time po-
tentially visible set creation from a 3D region that runs entirely on
the GPU, does not require any preprocessing and only requires the
triangle data as used for rendering.

To tackle this task, we view visibility computations from a differ-
ent angle. PVS approaches are usually concerned with the question
“Which screen area is covered by a single object (occluder) under all
view points inside the view cell?” Then, they determine whether
there are other objects (occludees) that always stay within that re-
gion and thus are never visible. Instead of trying to identify entire
regions covered by an occluder, we reverse the question and ask
“Under which camera offsets is a single screen location covered by
an object?”. To this end, we make the following contributions:

• We introduce the camera offset space, which, for a given point
on the image plane, provides information under which camera
offset the point is covered by a given triangle.
• By constructing the camera offset space for every pixel loca-
tion, we show how the entire PVS for a rasterized image can
be computed for translational camera movement.
• By elevating the camera offset space by two additional dimen-
sions, we show how it can be used to compute the PVS for
arbitrary sample locations and rotational camera movement.
• We provide a parallel formulation of the complete PVS com-
putation suitable for current GPUs using a combination of
rendering pipeline stages and compute mode execution.

We derive the mathematics behind the camera offset space (COS)
by describing a single triangle in the COS (Section 3.1). Using this
description, we consider the visibility between pairs of triangles
(Section 3.4), which we extend to the visibility of all objects at a single
pixel (Section 4). Performing this progressive visibility resolution
in parallel for all pixels already yields a reasonable PVS algorithm
that we effectively integrate into the rendering pipeline. However,
camera rotations that move sample locations may uncover triangles
not contained in this PVS. To include those and allow visibility
computations at a lower resolution, we include in-between sample
locations in the COS (Section 4.5). To evaluate our method, we show
that our approach can compute the PVS for various scenes with
different characteristics (Section 6).
Note that a similar streaming pipeline has recently been intro-

duced in Shading Atlas Streaming [Mueller et al. 2018], which fo-
cuses on collecting and transmitting shading data in an atlas to a
thin-client HMD. Their system lacks a sophisticated PVS algorithm
and simply uses a reference view to sample visibility. Thus, their
approach misses small triangles, creating holes and flickering arti-
facts in the final client rendering. Our approach solves these issues
and could be used as a drop-in replacement in their system.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

The Camera Offset Space: Real-time Potentially Visible Set Computations for Streaming Rendering • 231:3

2 RELATED WORK
The outlined system relates to many topics, including PVS gen-
eration, cloud rendering, encoding and transmission, alternative
shading approaches and image-based rendering.

2.1 Visibility Computations
Potentially visible set computation and occlusion culling have been
very active research topics decades ago [Cohen-Or et al. 2003], when
reducing the number of objects drawn was essential to achieve high
refresh rates. Facing a situation where the available rendering power
is again insufficient, PVS algorithms may resurface.

Exact Visible Set. A multitude of algorithms for exact visible set
(EVS) computations for a single view point exist. Among the most
well known are cells and portal approaches [Airey et al. 1990;
Jiménez et al. 2000; Teller and Hanrahan 1993], where the visible
set is computed for a position in a room with limited view to other
rooms. The technique can be run online by culling portals against
each other [Hong et al. 1997; Luebke and Georges 1995]. 3D planes
depicting the change of occlusion status can be used for large con-
vex occluders [Coorg and Teller 1999]. Similarly, one can view the
occlusion problem as a shadow frustra problem [Hudson et al. 1997],
use binary space partitioning (BSP) trees [Bittner et al. 1998], use a
hierarchical representation of occluders [Zhang et al. 1997], or use
hardware occlusion queries [Bittner et al. 2004; Govindaraju et al.
2003]. Motion prediction can also improve the results [Correa et al.
2003]. However, an EVS is not sufficient for streaming rendering
and a complete PVS is required.

Potentially Visible Set. A PVS for a region is significantly more
complex than from-point visibility. For indoor scenes, an exact
PVS is possible using preprocessing [Funkhouser 1996; Teller and
Séquin 1991]. For general scenes, approximative sampling can be em-
ployed [Gotsman et al. 1999] and conservative methods can employ
occluder fusion [Schaufler et al. 2000]. Considering the projected
area an occluder covers under all points within the region, other
objects can be classified as invisible if they stay within the fused pro-
jection [Durand et al. 2000]. Similarly, the PVS can conservatively be
estimated when taking point samples and shrinking occluders by an
ϵ value which corresponds to the distance between the point sample
locations [Wonka et al. 2000, 2001]. Alternatively, sampling can be
employed to approximate the PVS [Bittner et al. 2009; Koltun et al.
2001; Leyvand et al. 2003]. While sampling may become attractive
with GPU raytracing, computation speed is still an issue, as the syn-
ergy in global sampling approaches [Bittner et al. 2009] becomes a
non-factor in dynamic environments. Furthermore, sampling errors
may lead to significant flickering in virtual reality scenarios.

Unfortunately, all previously mentioned PVS algorithms are not
suitable for dynamic scenes, do not run online, require preprocess-
ing, or work on entire objects only. Thus, none are applicable for
the use in a streaming virtual reality scenario. Ideally, we want a
conservative PVS that is real-time and provides visibility informa-
tion on the level of individual triangles. Only then, the number of
shaded and transmitted triangles is reduced to a minimum while
holes are still avoided during rendering on the client. To the best of
our knowledge, there is no technique that meets these requirements.

(a) (b) (c)

Fig. 3. (a) A green triangle and ±1 px supported camera movement (light
green). (b) Traditional visibility computations consider which samples are
covered under all camera offsets (red) via intersection (yellow) of all sup-
ported offsets. (c) Our approach reverses the question and explores under
which camera offsets a sample stays within an occluder (full line) or moves
outside (dashed line) .

2.2 Other Components
While we focus on visibility computations, we would like to point
towards methods that could be used for other components of the sys-
tem. Shading information sent to the client could be generated using
object-space shading [Burns et al. 2010; Hillesland and Yang 2016;
Hladky et al. 2019; Mueller et al. 2018]; view-dependent shading
information could be updated from previous shading results [Sitthi-
amorn et al. 2008] or integrated similarly to image-based rendering
techniques [Kopf et al. 2013; Lochmann et al. 2014; Sinha et al. 2012;
Zimmer et al. 2015].

Frame rate upsampling [Didyk et al. 2010] and remote rendering
[Scherzer et al. 2011] are both related to our complete pipeline. In
most cases, image-based rendering [Chen and Williams 1993] (IBR)
is used to hide latency and create new views. These techniques
include forward warping [Chang and Ger 2002; Chen and Williams
1993; Wolberg 1998],mesh-based warping [Lee et al. 2015; Mark et al.
1997], backward warping [Nehab et al. 2007; Yang et al. 2011], and
using approximate proxy geometry [Buehler et al. 2001; Debevec
et al. 1996; Reinert et al. 2016]. All of these approaches have issues
with disocclusions. Our approach, on the other hand, does not, as
the PVS is transmitted to the client. Furthermore, our client-side
rendering is very efficient, as it neither involves complex geometry,
nor depth buffer reconstruction, nor stepping through depth images.
We simply render the PVS triangles.

3 CAMERA OFFSET SPACE
Our way of approaching visibility by asking the question “Under
which camera offsets is a single screen location covered by an object?”
is illustrated in Fig. 3. Using this information we can determine for
any pair of objects whether the camera offsets under which they
cover a sample overlap and thus determine visibility between them.

3.1 Offset Space for a Single Triangle
To introduce the COS, we start by considering a single triangle
and camera movement within a three dimensional cuboid region.
Starting from a triangle is intuitive, as our target is to construct the
PVS from the rendering stream of triangles without connectivity or
object information as input. While the following derivations start
simple and are related to well known concepts of standard real-time

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

231:4 • Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger

rendering, we quickly depart from these notions and construct a
precise description of the COS.

Let the supported camera movements be defined around the cur-
rent camera location as a cuboid in camera space: 0 ± c,∀c ∈ (0,C],
where C is the camera offset for which the PVS is computed. Fur-
thermore, we assume a triangle T = (p0c , p1c , p2c) in clip space,
with pic =

[
xic yic zic wic

]T . The projection of a triangle
is described as the projection of the triangle’s edges. Each edge’s
projection is captured by a plane that contains the edge and the
origin in the (x,y,w)-subspace of the clip space. The plane for an
edge eic of T is defined by its normal given by the pairwise cross
product of the vertices’ x , y, andw coordinates:

e01c = p̂0c × p̂1c e12c = p̂1c × p̂2c e20c = p̂2c × p̂0c , (1)

where the hat notation depicts the (x,y,w) coordinates of clip-
space entities, i.e. p̂ic =

[
xic yic wic

]T . For a sample location[
xsd ysd

]T in normalized device coordinates, we can test whether
the sample location is covered by the triangle, determining its loca-
tion with respect to all three edge planes. If eic ·

[
xsd ysd 1

]T ≤
0 ∀i, the triangle covers the sample. Note that · indicates the dot
product.

Considering a potential cameramovementC′ =
[
C ′x C ′y C ′z

]T ,
the camera (view) matrix V is altered: V′ = V + TC , where TC is a
zero matrix with −C′ in the last column. A point in object space po
is transferred to its clip space location pc=

[
xc yc zc wc

]T
using themodel (M), view and projectionmatrix (P): pc = P·V·M·po .
For the potential camera movement and a standard perspective

projection with near plane distance n, far plane distance f , and near
plane size (2r , 2t), the point’s location in clip space is given by

p′c = P · (V + TC) ·M · po (2)

= pc + P ·

−C ′x
−C ′y
−C ′z

1

 = pc +

n/r 0 0 0

0 n/t 0 0
0 0 zz zw
0 0 −1 0

 ·

−C ′x
−C ′y
−C ′z

1

 .
Thus, p′c describes pc under offset C′. Note that TC ·M · po yields

-C′ as most of the matrix elements are zero.
Considering the previous discussion, we are interested in the
(x,y,w)-subspace and thus equation (2) simplifies to:

p̂′c = p̂c +
[−C ′x n

r −C ′y n
t C ′z

]T (3)

For any camera offset within C, let

∆x = −C ′x
n

r
∆y = −C ′y

n

t
∆w = C

′
z (4)

Without loss of generality, consider the influence of the camera
movement on e12c . The plane equation of edge e12c (∆)′ going
through two points p′1c and p′2c evolves as follows

e′12c (∆) =

x1c + ∆x
y1c + ∆y
w1c + ∆w

 ×

x2c + ∆x
y2c + ∆y
w2c + ∆w

 (5)

=

∆y (w2c −w1c) + ∆w (y1c − y2c) + y1cw2c − y2cw1c
∆x (w1c −w2c) + ∆w (x2c − x1c) +w1c x2c − x1cw2c
∆x (y2c − y1c) + ∆y (x1c − x2c) + x1cy2c − y1c x2c

xc

yc

p̂1c

p̂2c

e01c

e12
c

e 20
c

(a) (x , y) clip space

∆x

∆yē01(∆)

ē12 (∆)

ē 20
(∆)

(b) 2D COS

Fig. 4. (a) A triangle in clip space covering a sample s (yellow) and 4 different
camera offsets (∆Ci) where the sample s exactly coincides with a triangle
edge. (b) The same triangle in a 2D slice of the COS for sample s . The points
Ii denote the intersections of the triangle’s COS representation with the
COS axes, which correspond to the camera offsets indicated in (a).

Thus, the scaled distance ē12 of a given sample s =
[
sxd syd 1

]T
(relative to the moving camera) to the edge e′12c is given by

ē12(∆) = e′12c (∆) · s (6)
= ∆x · ē12c ,x + ∆y · ē12c ,y + ∆w · ē12c ,w + ē12c ,0

= ∆ · [ē12c ,x ē12c ,y ē12c ,w
]T
+ ē12c ,0,

with

ē12c ,x = syd (w1c −w2c) + 1 · (y2c − y1c), (7)
ē12c ,y = sxd (w2c −w1c) + 1 · (x1c − x2c),
ē12c ,w = sxd (y1c − y2c) + syd (x2c − x1c),
ē12c ,0 = sxd (y1cw2c − y2cw1c) + syd (w1c x2c − x1cw2c)

+ 1 · (x1cy2c − y1c x2c).
For s being a sample on screen, we are interested in ē12(∆) = 0,

i.e., offsets ∆ for which the edge e′12c coincides with s. In other
words, those camera offsets for which the fragment moves outside
the triangle edge. It can be observed that ē12(∆) = 0 corresponds to
a plane in a three dimensional space over ∆. We call this space the
camera offset space. For an example of a slice of the COS see Fig. 4.

3.2 Offset Space for a Point
Similarly to transferring a triangle into camera offset space, we can
consider points in COS, i.e., compute under which offsets a vertex’
projection exactly coincides with the sample location. To compute
the normalized device coordinate (NDC) representation of a point
in clip space, one simply needs to perform the perspective division:

pndc =
[
xpc /wpc ypc /wpc

]T
This in combination with equation 3 and ∆ yields:

xpc + ∆x

wpc + ∆w
= sxd

∆x − ∆wsxd = wpc sxd − xpc

ypc + ∆y

wpc + ∆w
= syd

∆y − ∆wsyd = wpc syd − ypc
(8)

The two equations describe a line. Note that the change of ∆x while
moving along ∆w is proportional to sxd . Similarly, ∆y changes with
syd . Thus, the direction of the line only depends on the sample

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

The Camera Offset Space: Real-time Potentially Visible Set Computations for Streaming Rendering • 231:5

A
B

(a) isometric projection of view space

(b) 3D COS; s = [0, 0]T (c) 3D COS; s = [1, 1]T

Fig. 5. (a) Two identical but translated triangles with tips leaning away from
the camera (z2 and z5). The view ray for the sample intersects the triangles
at pointsA and B . (b) 3D COS for sample location at the origin of normalized
device coordinates, for which the triangles correspond to triangular prisms
orthogonal to the ∆w axis. (c) for other samples the prisms are more oblique
the further from the origin they are.

location, meaning all points correspond to parallel lines in COS for
a certain sample location.

3.3 Camera Offset Space Considerations
Analyzing the derived equations, we draw the following conclusions:
Considering all three edges of a triangleT , it becomes apparent that
the combination of ē01(∆) ≤ 0, ē12(∆) ≤ 0, ē20(∆) ≤ 0 forms a
subspace limited by three intersecting planes in the COS. Given
that all points result in parallel lines, the subspace is an oblique
triangular prism with infinite extent, which we denote as T∆. The
obliqueness of the prism depends on s, as shown in Fig. 5b and 5c.
To haveT∆ describe for which camera offsets the fragment s will be
covered by T , we additionally have to consider under which C the
near plane passes through the triangle, truncating the front of the
prism.
If we only allow two dimensional camera offsets, ∆w = 0, i.e.,

visibility from a plane, the camera offset space becomes 2D, ē12(∆) =
0 corresponds to a line, and T∆ becomes a triangle. While the COS
provides information under which offsets a sample is covered by
a triangle or exactly meets the projection of a vertex, it does not
consider the maximum supported camera movement. The camera
movement is simply a cuboid/rectangle in 3D/2D COS, defined by
the maximum offset ±C. Thus, visibility considerations in COS can
be limited to ±C.

Analyzing the derived equations, we draw the following conclu-
sions: First, triangles of identical shape, that are only translated

(a) img space (b) img space under C

∆x

∆y

(c) 2D COS at ∆w = 0

Fig. 6. Visibility consideration for the triangles from Fig. 5. (a) Their image
space projection shows the typical perspective effects. (b) Offsetting the
camera to positions where the sample coincides with the edges of the
green triangle: both triangles move differently due to their depth relations,
revealing positions that were not clear from (a). (c) The 2D COS reveals
those constellations. Furthermore, the red square denotes the supported
camera offset range and immediately reveals under which camera offsets
the blue triangle will be visible at sample s.

relative to each other, but not rotated, cover the exact same area
in COS for a single s (see Fig. 6). Furthermore, this means that un-
like perspective projection, where distant objects become smaller,
objects in COS keep their size. Thus, visibility considerations in
COS are more intuitive than in image space. Second, considering
the right side of equation 8, it becomes apparent that the 2D COS
can be thought of as an oblique projection, where the view plane is
the projection surface and the view-ray of s defines the projectors.
Thus, the projection changes as s is changed. For s = [0, 0]T the
projection is orthographic. Note that although the 3D COS results
in oblique prism shapes, this effect comes from the −∆ws ·d part
of equation 8. Third, when stepping along ∆w the relations on the
x-y plane simply shift. Thus, all 3D considerations could also be
made in 2D by considering the projection of the ±C cuboid to the
representative 2D COS plane.

3.4 Visibility for Pairs of Triangles
The camera offset space allows computing visibility between trian-
gles for a single sample location. To evaluate the potential visibility
of two trianglesT andQ at fragment s under possible camera offsets
∆, we compute T∆ and Q∆, i.e., bring them into COS. Intersecting
T∆ with Q∆ within ±C, whose volume/area in offset space shall be
denoted as C∆, we can distinguish three cases:

(1) T∆ ∩Q∆ ∩ C∆ = T∆ ∩ C∆

(2) T∆ ∩Q∆ ∩ C∆ = Q∆ ∩ C∆

(3) neither of the above.
For (1), the part ofT∆ inside ±C overlaps withQ∆, i.e., every camera
offset that samples T also hits Q . Thus, if Q is closer to the camera
for all those samples,T will never be visible at sample s. In case of (2),
the relation of the triangles is reversed andQ will never be visible if
T is closer. In case (3), both triangles may generate visible samples
at s under different camera offsets. Clearly, this already shows that
visibility in the COS does not need to explicitly distinguish between
occluder and occludee up front, as their COS representation brings
forth their relative positioning.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

231:6 • Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger

So far, we have not considered depth relationships in COS. Deter-
mining whether a triangle is in front of another requires the exact
depth value a triangle will produce for a fixed sample on the image
plane under all camera offsets. To compute this depth value we
consider the formulas describing homogeneous rasterization [Olano
and Greer 1997]: For a triangle at sample location s, the interpolated
1/wc component (which can be interpreted as the inverse of the
depth) is given by

1
ws
=

[
1 1 1

] ·
x0c x1c x2c
y0c y1c y2c
w0c w1c w2c

−1

·

sxd
syd
1

 .
Considering camera offsets (adding ∆) and solving for ws via the
adjugate matrix and determinant to compute the inverse, many
terms cancel out and a simple equation results:

ws =
∆xdx + ∆ydy + ∆wdw + d0

dad j
=

∆ · d + d0
dad j

. (9)

dx ,dy ,dw , and dad j are all functions of (p0, p1, p2, s) and thus con-
stant for a given triangle and a certain sample location. The structure
shows that by adding the depth information and thus extending
the 3D COS to 4D (or the 2D COS to 3D), the triangle/pyramid gets
embedded on a flat hyperplane in the respective space.

This yields three properties which allow elegant depth considera-
tions in an extended camera offset space: First, for every point in
2D and 3D COS, a depth value can efficiently be computed using
equation 9. Second, visibility computations in 2D COS can be seen
as an orthographic projection of triangles from a 3D space where
the third dimension is given by equation 9. Determining the visi-
bility within ±C in the orthographically projected 2D COS yields
the visibility of the involved triangles at the given sample location
under all camera offsets. Although more complicated to imagine, the
same considerations hold for 3D COS, where depth forms a fourth
dimension in which an orthographic projection down to 3D yields
the visibility.

4 POTENTIALLY VISIBLE SET AND RASTERIZATION
By applying the considerations derived for a single sample to all
pixels of a rendered image, we can compute a PVS for the entire
scene considering translations around the current camera location.
However, there are few problems with such approach. First, comput-
ing the intersections of 3D subspaces is not very efficient. Second,
considerations on pairs of triangles in practice are not sufficient
for a good PVS, as closed meshes will often occlude large parts of
the scene, while their individual triangles are too small. Third, the
considerations only hold for translational movement and do not
consider rotation. In the following, we will address these points to
derive a practical PVS algorithm that works in conjunction with
rasterization.

4.1 3D Movement and Camera Rotation
Increasing the field of view (FOV) is a starting point for dealing
with rotational camera movements. However, in practice, the FOV
is limited to stay below 180°, strongly limiting potential rotations.
Similar to previous work [Durand et al. 2000], the PVS for a 3D
region can be computed from multiple 2D regions, especially when

considering camera rotations: For a cuboid cell, the visibility can
be considered separately for all six bounding planes by placing
the camera in the center of each plane and matching the cuboid’s
dimension with ∆. Thus the evaluated camera positions correspond
to all side plane positions. With a 180° FOV, all view-rays exiting
the side planes are captured and the complete PVS for the 3D region
is constructed using 2D COS. While we could rely on the properties
of the COS itself to bring computations from 3D to 2D, using the
side planes has the same result and we avoid the projection of the
COS cuboid.

4.2 Fragment Lists and Sorting
For a practical implementation of the PVS using COS during rasteri-
zation, we construct the COS for each pixel and resolve visibility for
each pixel. This corresponds to an analytic visibility for all camera
offsets sampled at all pixel locations. We will tackle the sampling
issue after presenting a visibility resolution algorithm for each pixel.
At each pixel, all triangles Ti that fulfill T∆i ∩ C∆ , ∅ are needed,
i.e., all triangles which may cover the pixel under any supported
camera offset. To gather those triangles we construct a per-fragment
linked-list [Yang et al. 2010]. To generate samples for all triangles
that may cover a pixel, we expand them in size before rasterization.
As the expansion depends on C and each triangle’s location, a dy-
namic size increase is needed, which we achieve using an approach
similar to workarounds for conservative rasterization presented
by [Hasselgren et al. 2005]. Note that we do not need to consider
rotations here, as all view-ray directions are covered by moving the
camera on the side planes of the view cell.
By storing information about the fragment generating triangle

in each list entry, we can construct the COS for each pixel. As
the visibility considerations unfold around depth relations, it is
beneficial to sort those lists. However, as the depth in COS is a
function (see equation 9), no single depth value can be associated
with each entry and the COS depth ranges might even overlap. Thus,
sorting can only be approximative such that the list is processed
in a quasi front-to-back manner. We sort the lists according to the
minimum depth, which places potential occluders early in each list.

4.3 Occluder Fusion
As mentioned before, resolving visibility between triangle pairs is
hardly sufficient, as only the combination of multiple triangles may
form a sufficiently large occluder. Thus, we employ occluder fusion
during visibility resolution in the COS. Note that occluder fusion
has been used for entire objects during PVS construction [Schaufler
et al. 2000]. We require an efficient version for individual triangles
that works in the COS, i.e., merge triangles into a polygon.

The benefits of occluder fusion are twofold. First, it can be more
efficient to consider the overlap of a triangle with a polygon than
with many triangles (cf. the three cases outlined in Section 3.4).
Second, a fused occluder may occlude a triangle as a whole, whereas
its individual parts may not. With occluder fusion the process math-
ematically corresponds to

T∆f used = T∆0 ∪T∆1 ∪T∆2

O = Q∆ ∩T∆f used ∩ C∆,

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

The Camera Offset Space: Real-time Potentially Visible Set Computations for Streaming Rendering • 231:7

Δx

Δy

QΔ

(a) A first triangle is
transferred to COS. . .

Δx

OΔ,0

Δy

(b) . . . and kept as a po-
tential occluder.

Δx

OΔ,0

Δy QΔ

(c) Outside triangles are
immediately discarded.

𝚫𝐱

OΔ,0

𝚫𝐲

QΔ

(d) Another triangle is
processed. . .

Δx

OΔ,0

Δy

OΔ,1

(e) . . . and forms a sec-
ond occluder.

Δx

OΔ,0

Δy

OΔ,1
QΔ

(f) The next triangle is
invisible (Fig. 8, case b).

Δx

OΔ,0

Δy

OΔ,1

QΔ

(g) A triangle sharing
two edges. . .

Δx

Δy

OΔ,0

(h) . . . fuses the occlud-
ers into one.

Δx

Δy

OΔ,0

QΔ

(i) Triangles intersecting
the silhouette are kept.

Fig. 7. Example steps of progressive visibility resolution. Active edges and
reference points are indicated. The current triangle is given in blue, occluders
in green. Note that the active occluder silhouette always corresponds to the
active edges and intersections of active edges outside C∆ are ignored.

where T∆i forms the fused occluder andO yields information about
the visibility. To get the same occlusion information without oc-
cluder fusion, the occludee’s representation in the COS would have
to be individually clipped against all occluder triangles instead.
Keeping track of which parts of an occludee have not been clipped
yet is prohibitively complex. Thus, we employ occluder fusion by
merging triangles to form larger occluders if they share an edge in
the COS. Note that two triangles share an edge in the COS if they
also share an edge in world space. Thus, connected surfaces are the
only objects that form larger occluders.

4.4 Progressive Visibility Resolution
To bring all previous considerations together, we describe a serial
visibility resolution algorithm that can run for every per-pixel list in
parallel. The algorithm is outlined in Algorithm 1with example steps
shown in Fig. 7. The algorithm runs through the list of approximately
sorted triangles (ln 2) and determines the visibility for one triangle
after the other. Previously checked triangles are kept as potential
occluders and merged if they share edges.

For every triangle, we start with an analysis phase (ln 3-14): First,
we compute its COS representation (ln 3) and check its overlap

Algorithm 1: Progressive Visibility Resolution
1 Occluders ← ∅
2 for Q ∈ TrianдleList do
3 Q∆ ← computeCOS (Q , s)
4 for i ← 0 to 3 do
5 if intersect(Q∆ .edдe(i), rectangle(C∆)) then
6 Q∆ .edдe(i) ← CROSSING
7 else if outside(Q∆ .point(i),C∆) then
8 Q∆ .edдe(i) ← INACTIVE
9 else
10 Q∆ .edдe(i) ← ACTIVE

11 if Q∆ .edдe(0 . . . 2) = INACTIVE and Q∆ ∩ 0 = ∅ then
12 continue

13 Q∆ .d← depthEquation(Q∆, s)
14 Q∆ .re f s(0 . . . 2) ← choosePointsIn(Q∆ ∩C∆)
15 Qvisible ← true
16 for Occluder ∈ Occluders and Qvisible do
17 if ¬Occluder .coverall then
18 Overlap ← ∅
19 for T∆ ∈ Occluder and Overlap = ∅ do
20 for (eQ∆ , eT∆) ∈ Q∆ .edдe ×T∆ .edдe do
21 if eQ∆ or eT∆ = INACTIVE then
22 continue

23 if eQ∆ = eT∆ then
24 Merдinд← Merдinд ∪ (eQ∆ , eT∆)
25 continue

26 i← intersect(eQ∆ , eT∆)
27 if i , ∅ and i ∩C∆ , ∅ then
28 Overlap ← (eQ∆ , eT∆)
29 break 2

30 if (Overlap , ∅) then continue
31 if (∃r ∈ Occluder .refs | r ∈ Q∆) then continue

32 for T∆ ∈ Occluder do
33 if ∃r ∈ Q∆ .re f s | r ∈ T∆ then
34 if depth(T∆ .d, r) < depth(Q∆ .d, r) then
35 Qvisible ← false

36 break

37 if Qvisible then
38 if Merдinд , ∅ then
39 fuseOccluder(Merдinд)
40 setEdgesInactive(Merдinд)
41 else
42 Occluders ← Occluders ∪Q∆

43 actives ← (e | e ∈ Occluder .edдe ∧ e , INACTIVE)
44 if actives = ∅ then
45 Occluder .coverall ← true
46 else
47 Occluder .refs← choosePointsIn(actives ∩C∆)

48 return triangles(Occluders)

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

231:8 • Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger

Δx

ΔyOccΔ

QΔ

(a)

Δx

Δy

QΔ

OccΔ

(b)

ΔxQΔ

Δy

OccΔ

(c)

ΔxQΔ

Δy

OccΔ

(d)

ΔxQΔ

Δy

OccΔ

(e)

ΔxQΔ

Δy

OccΔ

(f)

Fig. 8. Six possible cases that do not have silhouette intersections within C∆ .
Note how (a,b), (c,d), and (e,f) can be distinguished based on their respective
reference point locations.

with C∆ by checking all three edges (ln 4). Determining all edge
intersections, we obtain additional information: Edges are classified
as either inside, inactive, or crossing. An inside edge is completely
contained in C∆; a crossing edge reaches from C∆ outside. Edges
which are completely outside of C∆ are marked as inactive. If all
edges are inactive (ln 12), the triangle is either completely outside
C∆ and invisible, or completely covers C∆. To check the latter, we
evaluate the triangle’s edge equations at 0 to determine whether it
covers the origin of the COS. If a triangle is outside C∆, we discard
it, as it is not visible under any supported camera offset.
For triangles which have not been discarded, we set up meta

information (ln 13-14): We compute the depth equation coefficients
and identify up to three points that are inside both Q∆ and C∆,
which we call the triangle’s reference points. If the triangle covers
C∆ entirely, we choose one reference point at 0. Otherwise, for each
edge labeled as inside or crossing we choose one reference point. If
either of the edge’s endpoints (q0, q1, or q2) lie inside of C∆ we use
the endpoint. If both endpoints are outside C∆ (in case of a crossing
edge), we compute the intersection with C∆. While this information
seems arbitrary at this point, we use it in combination with the edge
classification to determine the relationship of triangles efficiently
throughout the algorithm. We will limit considerations to inside and
crossing edges and use the reference points when we do not find
any edge overlaps to determine whether a triangle is inside another
or if they are separate—similarly to how we used 0 to determine if a
triangle covers C∆ completely.

The main visibility algorithm checks each triangle against the cur-
rent list of occluders (ln 16-36). We discard a triangle if an occluder
covers it completely. In the simplest case, an occluders covers C∆

entirely and we know that there is complete overlap of the triangle
and the occluder in C∆. We then skip large parts of the algorithm
(ln 17-30) and directly move to considering depth relations.

∆y

∆x

(a) δx = −0.5px δy = 0px

∆x

∆y

(b) δx = 0.5px δy = 0px

Fig. 9. Extending the case from Fig. 5 for sub-sample offsets with the original
sample location in yellow. Due to view-space depth differences between
the vertices, each vertex moves at a different speed when moving through
the sub-sample dimensions. The edges slide and rotate, thus distorting the
shape of the triangles.

If the occluder does not cover C∆, we need to determine whether
Occluder∆ ∩ Q∆ ∩ C∆ = Q∆ ∩ C∆, i.e., whether Q∆ is completely
inside the fused occluder within C∆. To this end, we determine
if there is an intersection between the triangle and the silhouette
of the occluder within C∆. If the silhouette intersects any triangle
edge within C∆, the occluder certainly does not cover the triangle
under any supported offset and we continue with the next occluder.
Instead of keeping the silhouette around explicitly, we iterate over
all occulder triangles T∆ (ln 19) and test all occluder edges against
all edges of Q∆. If either edge is inactive, we skip the test (ln 21).
This does not only include edges outside of C∆, but also edges inside
the occluder, which we set inactive when fusing triangles (ln 40)).

To compute the relation between two edges, we first test whether
they are identical (ln 24). Otherwise, we compute the intersection
of the edges (ln 26) and whether it is inside C∆. Note that we do
not need the exact intersection i if either of the edges is marked as
inside, as the intersection must also be inside then. Only for crossing
edges, we compute the exact intersection. In case the intersection is
outside, we ignore it, as this does not influenceOccluder∆∩Q∆∩C∆.
If it is inside, we move to the next occluder (ln 28).
If there is no overlap between the occluder’s silhouette and the

triangle, there are six possible cases to consider , as shown in Fig. 8:
(a) Q∆ is completely inside Occluder∆
(b) Q∆ is inside Occluder∆ only within C∆

(c) Occluder∆ is completely inside Q∆

(d) Occluder∆ is inside Q∆ only within C∆

(e) Occluder∆ and Q∆ are completely disjoint
(f) Occluder∆ and Q∆ are disjoint only within C∆

To distinguish between the cases, we use Q∆’s reference points
and the reference points we keep for each occluder (Occluder .refs in
the algorithm), which we choose from the triangle reference points
as we add them to occluders. We start by testing for cases (c) and
(d) as those are the easiest. The distinguishing fact for these cases is
that the silhouette is (partially) inside Q∆. To this end, we iterate
over Occluder .refs and if any of those is inside Q∆ (which we test
using the edge equations), we have confirmed case (c) or (d) (ln 31).
Then the triangle is not occluded and we continue with the next
occluder.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

The Camera Offset Space: Real-time Potentially Visible Set Computations for Streaming Rendering • 231:9

To distinguish between (a), (b), which may result in Q being
occluded and (e), (f), which both show that Q is not occluded by
this occluder, we test whether a triangle’s reference point is inside
Occluder∆ ∩ C∆. As the occluder may be concave, the test is more
involved and we compute it as the final check (ln 32). We iterate
over all occluder triangles and check whether a reference point is
inside any of them. In case it is, we have verified that Q∆ ∩ C∆ is
inside Occluder∆ (as we already have ruled out the other cases).
However, for Q to be occluded, Q must be behind the occluder,
which we verify at the reference point using the occluder triangle’s
depth equation (ln 34). Note that we perform the same test if an
occluder covers C to establish the depth relations. Also note that
this depth test is only sufficient for non-penetrating triangles. To
support penetrating triangles, we would have to iterate over all
occluder triangles and check for depth intersections for all occluder
triangles. This is certainly possible, but more costly.
If all tests yield that Q is visible, we add Q∆ to the occluders

(ln 37-47). If the triangle shares one or multiple edges with other
occluders, we attach it to those occluders, possibly merging up
to three occluders. We set the shared edges to inactive and check
whether all occluder edges are inactive, which indicates that the
occluder coversC∆. Then, we set the coverall flag to speed up testing
against that occluder. Finally, we update the occluder’s reference
points (ln 47). After all triangles have been processed, all potentially
visible triangles have been added as occluders and they can directly
be output as the PVS for sample s.

4.5 Between Sample Locations
So far we have only considered individual sample locations. When
rendering with a wider FOV, sample locations considered by the
COS will not coincide with the final image sample locations. Thus,
tiny triangles may be missing from the PVS. Also, when considering
rotations, sample locations will not coincide with the sample loca-
tions considered by our algorithm. To be able to handle all possible
sample locations within a pixel, we extend the COS by another two
dimensions which represent the sample offsets δx and δy in x and y
direction, respectively. δx and δy form linear offsets to the sample
location s. Thus, the PVS computation becomes resolution indepen-
dent as a result and can be run at reduced resolution. A maximum
offset of ±pixelsize/2 makes sure the algorithm considers all possi-
ble samples on the view plane. For a 2D COS, Equation 8 extends
to:

xp + ∆x

wp
= sx + δx

∆x −wpδx = wpsx − xp

yp + ∆y

wp
= sy + δy

∆y −wpδy = wpsy − yp ,
(10)

which corresponds to a line in 4D space. Adding these two dimen-
sions essentially includes the change of the oblique projection when
moving from one sample location to the next. Considering individ-
ual edges, they slide and rotate when moving along the δx and δy
dimension, as shown in Fig. 9.

While this extensionmakes the COSmore complex, the changes to
our approach are manageable. For the list construction, we increase
the triangle enlargement by half a pixel. For algorithm 1, the edge
intersection tests are affected. Instead of determining if a triangle

edge intersects with C∆ (ln 5), we determine if it intersects C∆ under
any δ . The same is true for edge-edge intersections (ln 27).
All other computations remain the same under the following

assumptions: First, depth relations of a triangle and an occluder
remain the same under any δ . Second, inside-outside tests for δ =
0 carry over to all sample offsets. Both assumptions hold, if the
silhouette-triangle intersection algorithm reports intersection under
any sample offset. If there is no intersection, the occluder reference
point check (ln 31) and the triangle reference point check (ln 32)
can be run with δ = 0 to draw conclusions for all δ .
The issue of edge-C∆ intersection and edge-edge intersection

under a sample offset are the same problem; the edge-C∆ case does
not apply any offset to the boundary edges of C∆. As we are only
interested in whether there is an intersection and not in its exact
location (unless both edges are flagged as crossing), a simple test for
line segment intersection detection can be used. Ignoring sample
offsets, one such test is formed by computing the orientations o of
all four groups of point triples [Cormen 2009, Chapter 3.1]. Let

o(a, b, c) = sдn((yc − ya) · (xc − xb) − (xb − xa) · (yc − yb))

be the orientation of points a, b, c, with [xi yi]T being the coordi-
nates of point i. If o(p2, p3, p0) = −o(p2, p3, p1) and o(p0, p1, p2) =
−o(p0, p1, p3), the line segments (p0,p1) and (p2,p3) intersect.
These computations can easily be extended to the sample offset

dimensions, by inserting equation 10 for all for edge points. Set-
ting the o(·, ·, ·) = 0 for each group yields a line in δ . These lines
describe when the orientation of one group changes while stepping
through the sample offset dimension. The combination of all lines
partitions the δ -dimension into regions with different orientations.
Considering the orientations of each partition inside ±pixelsize/2,
we compute whether the line segments intersect under any δ . Note
that most often, the lines fall outside ±pixelsize/2 and thus the over-
head of adding the sample offset dimension does not significantly
affect performance.

Determining the exact intersection of two edges marked as cross-
ing is not as straightforward. Expressing the intersection by insert-
ing the parameter-free line equation of one edge into the param-
eterized equation of the other yields a hyperbola in δ . Instead of
trying to solve the equation, we opt for a conservative estimate
of the intersection location, which is more efficient to compute.
We estimate the parameter range under which an intersection can
occur: We first insert ±pixelsize/2 into the hyperbolic function to
establish the intersections at the extrema of the supported sample
offsets. Then, we compute its derivative and set it to zero to get the
potential extrema locations inside ±pixelsize/2 and evaluate those.
Additionally, we bound the established parameter range by the edge
itself (0, 1). This yields a bound under which an intersection can
occur. Evaluating the line equation for the extrema of this param-
eter range and extending the resulting ∆ range by the maximum
endpoint displacement under δ gives a conservative estimate of
where the intersection of the edges in the COS can occur. If this
conservative estimate does not intersect C∆, the edge intersection is
certainly outside C∆. A conservative estimate results in a potential
increase of the PVS, but never removes visible triangles.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

231:10 • Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger

Potentially Visible Set

Triangle
Enlargment

Fragment
List

BinningSorting
Visibility

Resolution
Compaction

Fig. 10. Our PVS construction in detail: blue blocks correspond to CUDA
kernels, red indicates a geometry shader and green a fragment shader.

5 IMPLEMENTATION
To implement the COS PVS algorithm on the GPU, we use a combi-
nation of OpenGL and CUDA. The same functionality can also be
achieved using any other graphics API and compute mode shader
execution. To evaluate our technique in practice, we implement
a prototype of the entire pipeline. Starting from simple geometry
input, we compute the PVS which yields a list of triangles, which
we shade in object space, pack into a texture and transmit to the
client. On the client side, we perform simple textured rendering of
the transmitted triangles according to the current view. The imple-
mented PVS steps are outlined in Fig. 10.
Our PVS algorithm starts with capturing all triangles rendered

for a given view. Next, we create an approximately sorted per-pixel
list of triangles that may cover a pixel under any camera offset.
To this end, we approximately sort all triangles before creating
linked lists, to avoid sorting each list individually. For the linked
list creation, we use an OpenGL rendering pass. To determine all
pixels that can potentially be covered by a triangle, we enlarge
every triangle similarly to conservative rasterization in the geometry
shader [Durand et al. 2000]. To increase performance, we perform list
creation in a two-pass approach. During sorting (when all triangles
are touched for the first time), we determine the number of triangles
that will hit a fragment and thus can use fixed size memory for
each list. Furthermore, we store an early z discard value for each
fragment when we determine that a triangle covers a fragment
under all camera offsets. These optimizations significantly reduce
computations in comparison to capturing a dynamic linked list first
and sorting all lists separately.

Working on different list sizes involves vastly different numbers
of steps, thus we use specialized implementations of algorithm 1 for
different bin sizes. Small lists use a single thread and parallelization
happens across threads. Medium-sized lists are handled by small
groups of threads (warps), where the warps at first construct occlud-
ers in a combined effort and then re-test visibility of all triangles
against the preformed occluders. Larger lists start with a coopera-
tive initialization similarly to the warp variant. Then, every thread
runs algorithm 1 on one incoming triangle in parallel.

6 RESULTS
To evaluate our approach, we test four 3D scenes with various
characteristics (Fig. 11). We use pre-recorded camera paths, which
correspond to natural interactions with those scenes. Each scene is
tested in two versions: the complete geometry and a low LOD ver-
sion of the scene (Fig. 12). To yield correct results, the LOD version
requires a mapping from simplified to full geometry. Furthermore,
the LOD version needs to feature an inscribed and a circumscribed
geometry version—one for occludee testing and the other for testing

(a) Viking Village (VV), 4.6M tris (b) Robot Lab (RL), 472k tris

(c) Gallery 03 (G3), 5.85 M tris (d) Gallery 06 (G6), 1.52 M tris

Fig. 11. Tested scenes. (a) is a large outdoor scene offering many challenges
for our algorithm, such as long fragment lists, small slanted triangles, and
multiple layers of slightly offset structures. (b) is a smaller indoor scene. (c, d)
aremassive CAD indoor scenes with high-detail geometry fromDoshDesign.

(a) Full geometry (b) Level of Detail (LOD) geometry

Fig. 12. LoD example used for Gallery 03 scene.

whether a triangle should become an occluder. Tests were run on
an Intel Xeon CPU E5-2643 @ 3.4GHz with 32 GB of RAM and an
NVIDIA Titan Xp.
For our tests, we consider a head movement of 5 to 30 cm, a

rotation of ±15 to 60 degree, and COS-pass resolutions between
200 × 100 and 1000 × 500. All client renderings are performed in
1920 × 1080 with 50 degree FOV. Note that all COS-pass resolutions
yield the full PVS, as we always consider between pixel locations.
This parameter set together with eight scene variants yields 960
different configurations, all included in the supplemental material.
In the following, we present representative results from the test set.

There is no other PVS algorithm designed to work for our usecase:
a dynamic input triangle stream without preprocessing. Neverthe-
less, we have implemented an efficient version of Instant visibil-
ity [Wonka et al. 2001] to work on individual triangles: At first
the scene is rendered with occluder shrinking being applied on all
triangles. During a second pass, the depth buffer of the first pass is
used to determine triangles that may become visible at any location.
As resolution, we always use the client resolution (1920 × 1080).
To compare to the state-of-the-art for streaming rendering, a com-
parison to image-based rendering approaches can be found in the
supplemental material. These results indicate the advantages of hav-
ing a PVS available and sending shading information for the entire
potentially visible geometry to a client.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

The Camera Offset Space: Real-time Potentially Visible Set Computations for Streaming Rendering • 231:11

RL VV G3 G6

0

5

10

15

20

200 x 100 600 x 300 1000 x 500

P
V

S
Si

ze
 (

%
)

0

50

100

150

200

250

300

200 x 100 600 x 300 1000 x 500

V
is

ib
ili

ty
 T

im
e

(m
s)

Fig. 13. Average PVS size for walkthroughs of full detailed scenes (in percent
of full geometry) and timing (in ms) for various fragment list construction
resolutions. The PVS always contains all necessary triangles. Increased sizes
correspond to conservative overestimations.

RL VV G3 G6

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30

V
is

ib
ili

ty
 T

im
e

(m
s)

Supported translation (cm)

0

50

100

150

200

15 30 45 60

V
is

ib
ili

ty
 T

im
e

 (
m

s)

Supported rotation (deg)

Fig. 14. Average timing (in ms) for walkthroughs of full detailed scenes for
camera offsets and supported angles.

(a) Scene view (b) COS for left top

(c) IV alt view (d) IV for left top

Fig. 15. True positives (green), true negative (yellow), false positives (blue)
and false negatives (red) of our COS and the compared Instant Visibility
for the view shown in (a). Alternative views for the left top region of (a) are
provided in (b-d). Our approach does not show a single false negative, while
IV misses many triangles and has similar amounts of false positives.

6.1 Inner workings
Fig. 17 shows challenging example views. Our algorithm discards
occluded geometry and novel views are correctly rendered from
the PVS. Consider the example in the third column of Fig. 17, the
roof occludes large parts of the scene and no geometry behind the
roof is classified as visible. A slight movement or rotation to either

Fig. 16. Running IV on a higher resolution only marginally increases true
positives, while increasing time cost and false positive count, as shown for
the evaluation on VV in this example. COS (shown in dots) per design has a
higher initial cost, but is completely conservative with lower false positives.

side opens up the view to the mountain in the back. The respective
triangles are clearly classified as potentially visible.
The COS works at any resolution when considering between-

sample locations. However, different resolutions influence perfor-
mance and PVS overestimation. The extreme case—a single sample—
gathers all triangles in a single list. The results for different COS
resolutions (Fig. 13) show that the PVS size stays mostly constant,
which indicates that our approach always captures all necessary
geometry. For RL and VV, PVS size slightly decreases with increas-
ing resolution, as the approximations and conservative accepts are
reduced. G3 and G6 behave differently. Those are CAD scenes and
contain many regular triangle grids (Fig. 12a). The denser the gath-
ering resolution, the more triangles fall onto the COS boundary,
yielding more conservative accepts. The execution time increases
significantly with higher resolution asmanymore lists are processed.
Thus, the overall best resolution seems to be the smallest tested res-
olution, which we use for all further testing. Further lowering the
resolution made the performance significantly worse.

In addition to the COS-resolution, the ranges of camera offsets and
rotations influence performance. Fig. 14 shows that increasing the
view cell size also increases the visibility resolution approximately
linearly. This is not surprising, as for larger view cells triangles
are visible at more sample locations, which increases list lengths
and visibility resolution needs to work through more triangles. The
supported camera rotation has less influence on the timing, as the
number of samples stays the same; they are simply spread out more
in the scene. Thus, depending on the scene, the execution time can
increase, decrease or even fluctuate for different ranges of rotations.

6.2 Performance and Comparison
Table 1 shows a detailed comparison against Instant Visibility (IV).
To determine whether triangles are classified correctly, we use a
sampled ground truth PVS, for which we render 216 views in 4K
resolution distributed over the view cell and add all triangles that are
visible in any view to the PVS. While this approach captures a large
amount of geometry, it still might miss small triangles. Thus the
actual PVS might be slightly larger than our ground truth. However,
computing an exact ground truth PVS is hardly achievable within
realistic computation time and suffers from floating point errors.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

231:12 • Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger

Fig. 17. Three challenging scenarios that our method handles correctly: The first row is the reference view; the second row shows the calculated PVS (red dot
shows the camera position in reference view); and the insets show heat-maps of the fragment list length with low (blue) of 1 and high (red) of 256/2048/2048
entries. The slanted triangles case shows an additional inset indicating triangle topology. The novel views show that all geometry is contained in the PVS.

Our PVS algorithm reduces the triangle count from 472k down
to 50k to 100k for RL, from 4.7M down to 170k to 270k for VV, from
5.8M down to 80k to 100k for G3, from 1.5M down to 35k to 50k for
G6. In all our tests our approach always marks all required triangles
as potentially visible, not missing a single triangle. However, our
PVS shows an overestimation between 20 to 90%. Note that some
of these triangles are likely to be true positives, as we still observed
small triangles missing from our sampled ground truth. For the
full scenes, our PVS computations takes between 35 to 220ms. On
the LOD models, we reduce the 23k, 138k, 428k, and 117k triangles
down to 5k, 10k, 9k, and 7k, respectively. For the LOD scenes, we
have a false positive rate of up to 100%. Execution times are between
12 to 38ms. While the full scenes may result in a low server frame
rate, the LOD times are certainly sufficient for real-time streaming
in our use case (note that the client frame rate is independent).

While our approach never misses a single triangle, it potentially
overestimates the PVS by a significant margin. However, the sam-
pling approach taken by Instant Visibility [Wonka et al. 2001] ap-
plied to a simple triangle stream cannot produce useful results. As
can be seen, the number of false negatives is most often signifi-
cantly larger than the true positives, i.e., missing more triangles
than are being captured. This is a typical issue when using sampled
visibility to classify small geometry—simply too much geometry

is missed (also shown in Fig. 15). Due to shrinking, the number of
false positives is also higher than the true positives and most often
in a similar order as in our approach. Of course, the run time of
IV is rather short with 3 to 23ms for the original scenes and 1.7 to
3.3ms for the LODs. Providing IV with more time by increasing the
resolution only marginally improves its performance (see Fig. 16),
as it is not suitable for determining visibility of a triangle stream.
To further underline the need and effectiveness of resolving the

PVS for in-between sample locations, we show a rendering from
a finely tessellated water scene (Fig. 18). As can be seen, holes are
present in the PVS when in-between sample locations are ignored.
These holes become visible under small camera rotations. However,
including the half pixel offset into all tests in the COS leads to
a complete PVS for translation and rotation. In comparison, SAS
[Mueller et al. 2018] suffers from such artifacts, as their PVS is
computed by sampling patches of up to 3 neighboring triangles,
missing patches that fall in between the samples.
To analyze the performance of our approach in detail, Fig. 19

shows the timings for each step of our algorithm. Clearly, sorting,
fragment list generation, binning and copy out are very efficient.
Considering the amount of primitives in the fragment lists our
complete visibility resolution implementation is reasonably efficient.
However, optimizations in this stage are still possible.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

The Camera Offset Space: Real-time Potentially Visible Set Computations for Streaming Rendering • 231:13

Table 1. Timing and quality breakdown for walkthroughs for all scenes. COS resolution is 200 × 100, FOV is 60◦. Timing for the whole pipeline are given in ms,
true positives, false positives and false negatives are compared to a ground truth obtained using high-resolution sampling. List entries capture the overall list
entries stored for the per-fragment linked lists, list lengths are provided on a per list basis. All measurements are averaged over the whole walkthrough.

COS Instant Visibility
triangles C list entries list max / avg time true pos false pos false neg time true pos false pos false neg

O
rig

in
al

RL 472k 5.00cm 590k 8573 / 28 96.98 60k 36k 0 3.76 16k 18k 44k
30.00cm 1.44M 10581 / 71 161.76 68k 26k 0 3.72 17k 17k 51k

VV 4.7M 5.00cm 1.63M 109675 / 131 175.53 137k 42k 0 18.34 31k 45k 106k
30.00cm 2.7M 117461 / 207 227.34 154k 25k 0 18.32 32k 45k 123k

G3 5.8M 5.00cm 828k 144616 / 40 38.10 50k 43k 0 22.30 5k 11k 45k
30.00cm 2.5M 190161 / 125 78.49 56k 49k 0 22.31 6k 10k 50k

G6 1.5M 5.00cm 612k 24597 / 30 50.11 24k 17k 0 7.51 3k 5k 21k
30.00cm 1.9M 32311 / 95 104.12 27k 23k 0 7.50 3k 4k 24k

LO
D

RL 23k 5.00cm 109k 496 / 4 11.92 2197 2106 0 1.78 1006 1711 1191
30.00cm 257k 627 / 12 18.87 2506 2863 0 1.70 1086 1743 1420

VV 138k 5.00cm 81k 3014 / 5 22.21 5336 4475 0 2.21 2559 3822 2777
30.00cm 178k 3787 / 13 33.47 5939 5883 0 2.22 2665 3966 3274

G3 428k 5.00cm 248k 11940 / 11 19.90 4198 3474 0 3.31 1165 1822 3033
30.00cm 680k 16662 / 33 38.06 4865 4669 0 3.33 1278 1741 3587

G6 117k 5.00cm 118k 1974 / 5 12.52 3192 3236 0 2.15 672 1114 2520
30.00cm 333k 4636 / 16 21.86 3782 3466 0 2.14 749 1074 3033

(a) Water scene geometry (b) SAS; Patches of up to 3 neighbors

(c) COS; Sample locations only (d) COS; Between sample locations

Fig. 18. (a) A scene with very small triangles highlights the need to consider
between sample locations. A different perspective on the regions in the back
reveals missed triangles when considering pixel centers only (b,c). After
including the half-pixel offset the COS, PVS becomes watertight, adding
support for any translation and rotation within the supported view cell.

7 CONCLUSION AND FUTURE WORK
Starting from considerations about under which camera offsets a
triangle covers a given pixel, we have introduced the camera offset
space (COS). In COS, this coverage is a simple geometric shape. By
deriving a function that describes the depth of the triangle under
all camera movements, it is possible to determine whether one

Binning Sor�ng Construc�on Visibility Copy out

7.88

10.18

22.05

8.98

0 5 10 15 20 25

RL

VV

G03

G06

(a) LOD geometry

36.44

128.93

108.45

41.95

0 50 100 150

RL

VV

G03

G06

(b) Full geometry

Fig. 19. Step timings for the different stages of our algorithm in ms.

triangle will cover another for various camera offsets. Extending
this approach to all samples of a rendered scene and locations in-
between samples, we have shown that a complete potentially visible
set (PVS) can be constructed. As with all PVS algorithms, occluder
fusion is of high importance, which we integrate for connected
surfaces that we extract on the fly.
By implementing our visibility algorithm in a combination of

OpenGL and CUDA, we have presented interactive rates for online
PVS generation, especially when using LOD geometry for com-
plex scenes. Testing indicates that our approach is very reliable
and always captures the complete PVS. Our approach is the first
PVS algorithm that works on-the-fly and without preprocessing.
All information is computed directly from the triangle input, thus,
dynamic objects and connectivity changing are supported.

In the future, we aim to address all other aspects of the proposed
streaming rendering pipeline. While we support dynamic objects,

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

231:14 • Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger

their movement from the current PVS construction until the render-
ing takes place is not considered in the PVS. Movement prediction
could be incorporated directly into COS and also transmitted to the
client. Our COS is also applicable in a multi-framerate rendering sys-
tem, where server and client run on the same machine, performing
frame-rate upsampling while reducing overall GPU load.

ACKNOWLEDGMENTS
This research was supported by the Max Planck Center for Visual
Computing and Communication, by the German Research Founda-
tion (DFG) grant STE 2565/1-1, the Austrian Science Fund (FWF)
grant I 3007, and NVIDIA Corporation who donated the GPU used
for this research.

REFERENCES
John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. 1990. Towards Image Re-

alism with Interactive Update Rates in Complex Virtual Building Environments.
SIGGRAPH Comput. Graph. 24, 2 (Feb. 1990), 41–50.

Jiri Bittner, Vlastimil Havran, and Pavel Slavik. 1998. Hierarchical visibility culling
with occlusion trees. In Computer Graphics International, 1998. Proc. 207–219.

Jiří Bittner, Oliver Mattausch, Peter Wonka, Vlastimil Havran, and Michael Wimmer.
2009. Adaptive Global Visibility Sampling. ACM TOG 28, 3, Article 94 (July 2009),
10 pages.

Jiří Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. 2004. Coherent
hierarchical culling: Hardware occlusion queries made useful. In CGF, Vol. 23. 615–
624.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
2001. Unstructured Lumigraph Rendering. In Proc. SIGGRAPH (SIGGRAPH ’01).
425–432.

Christopher A. Burns, Kayvon Fatahalian, and William R. Mark. 2010. A Lazy Object-
space Shading Architecture with Decoupled Sampling. In Proc. High Performance
Graphics (HPG ’10). 19–28.

Chun-Fa Chang and Shyh-Haur Ger. 2002. Enhancing 3D Graphics on Mobile Devices
by Image-Based Rendering. In Proc. of the Third IEEE Pacific Rim Conference on
Multimedia: Advances in Multimedia Information Processing (PCM ’02). 1105–1111.

Shenchang Eric Chen and LanceWilliams. 1993. View Interpolation for Image Synthesis.
In Proc. SIGGRAPH (SIGGRAPH ’93). 279–288.

Daniel Cohen-Or, Yiorgos L Chrysanthou, Claudio T. Silva, and Frédo Durand. 2003. A
survey of visibility for walkthrough applications. IEEE Transactions on Visualization
and Computer Graphics 9, 3 (2003), 412–431.

Satyan Coorg and Seth Teller. 1999. Temporally Coherent Conservative Visibility.
Comput. Geom. Theory Appl. 12, 1-2 (Feb. 1999), 105–124.

Thomas H Cormen. 2009. Introduction to algorithms. MIT press.
Wagner T. Correa, James T. Klosowski, and Claudio T. Silva. 2003. Visibility-Based

Prefetching for Interactive Out-Of-Core Rendering. In Proc. PVG (PVG ’03). 2–.
Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. 1996. Modeling and Rendering

Architecture from Photographs: A Hybrid Geometry- and Image-based Approach.
In Proc. SIGGRAPH (SIGGRAPH ’96). 11–20.

Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol Myszkowski, and Hans-Peter
Seidel. 2010. Perceptually-motivated Real-time Temporal Upsampling of 3D Content
for High-refresh-rate Displays. CGF (Proc. Eurographics 2010) 29, 2 (2010), 713–722.

Frédo Durand, George Drettakis, Joëlle Thollot, and Claude Puech. 2000. Conservative
visibility preprocessing using extended projections. In Proc. Computer graphics and
interactive techniques. 239–248.

Thomas A Funkhouser. 1996. Database management for interactive display of large
architectural models. In Graphics Interface, Vol. 96. 1–8.

Craig Gotsman, Oded Sudarsky, and Jeffrey A Fayman. 1999. Optimized occlusion
culling using five-dimensional subdivision. Computers & Graphics 23, 5 (1999),
645–654.

Naga K. Govindaraju, Avneesh Sud, Sung-Eui Yoon, and Dinesh Manocha. 2003. Inter-
active Visibility Culling in Complex Environments Using Occlusion-switches. In
Proc. of the 2003 Symposium on Interactive 3D Graphics (I3D ’03). 103–112.

Jon Hasselgren, Tomas Akenine-Möller, and Lennart Ohlsson. 2005. Conservative
rasterization. GPU Gems 2 (2005), 677–690.

Karl E. Hillesland and J. C. Yang. 2016. Texel Shading. In EG 2016 - Short Papers,
T. Bashford-Rogers and L. P. Santos (Eds.). The Eurographics Association.

Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger. 2019. Tessellated Shading
Streaming. Computer Graphics Forum 38, 4 (2019), 12.

Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. 1997. Virtual
voyage: Interactive navigation in the human colon. In Proc. Computer graphics and
interactive techniques. 27–34.

Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and
Oliver Spatscheck. 2012. A Close Examination of Performance and Power Charac-
teristics of 4G LTE Networks. In Proc. of International Conference on Mobile Systems,
Applications, and Services (MobiSys ’12). 225–238.

Tom Hudson, Dinesh Manocha, Jonathan Cohen, Ming Lin, Kenneth Hoff, and Han-
song Zhang. 1997. Accelerated occlusion culling using shadow frusta. In Proc.
Computational geometry. 1–10.

WFH Jiménez, Claudio Esperança, and Antonio AF Oliveira. 2000. Efficient algorithms
for computing conservative portal visibility information. In CGF, Vol. 19. 489–498.

Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. 2001. Hardware-
accelerated from-region visibility using a dual ray space. In Rendering Techniques
2001. 205–215.

Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael
Goesele. 2013. Image-based rendering in the gradient domain. ACM TOG 32, 6
(2013), 1–9.

Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Alec Wolman, Yury Degt-
yarev, Sergey Grizan, and Jason Flinn. 2015. Outatime: Using Speculation to Enable
Low-Latency Continuous Interaction for Mobile Cloud Gaming. GetMobile: Mobile
Comp. and Comm. 19, 3 (Dec. 2015), 14–17.

Tommer Leyvand, Olga Sorkine, and Daniel Cohen-Or. 2003. Ray Space Factorization
for From-region Visibility. ACM TOG 22, 3 (July 2003), 595–604.

Gerrit Lochmann, Bernhard Reinert, Tobias Ritschel, Stefan Müller, and Hans-Peter
Seidel. 2014. Real-time Reflective and Refractive Novel-view Synthesis, Jan Bender,
Arjan Kuijper, Tatiana von Landesberger, Holger Theisel, and Philipp Urban (Eds.).
Eurographics Association, Darmstadt, Germany, 9–16.

David Luebke and Chris Georges. 1995. Portals and mirrors: Simple, fast evaluation of
potentially visible sets. In Proc. Interactive 3D graphics. 105–ff.

William R. Mark, LeonardMcMillan, and Gary Bishop. 1997. Post-rendering 3Dwarping.
Symposium on Interactive 3D Graphics Figure 2 (1997), 7–16.

Joerg H. Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar, Markus
Steinberger, and Dieter Schmalstieg. 2018. Shading Atlas Streaming. ACM TOG 37,
6, Article 199 (Dec. 2018), 16 pages.

Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and John R. Isidoro.
2007. Accelerating Real-time Shading with Reverse Reprojection Caching. In Proc.
Symposium on Graphics Hardware (GH ’07). 25–35.

Marc Olano and Trey Greer. 1997. Triangle scan conversion using 2D homogeneous
coordinates. In Proc. workshop on Graphics hardware. 89–95.

Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo, David Chu, and
Hans-Peter Seidel. 2016. Proxy-guided Image-based Rendering for Mobile Devices.
CGF 35, 7 (2016), 353–362.

Gernot Schaufler, Julie Dorsey, Xavier Decoret, and François X Sillion. 2000. Conser-
vative volumetric visibility with occluder fusion. In Proc. Computer graphics and
interactive techniques. 229–238.

Daniel Scherzer, Lei Yang, Oliver Mattausch, Diego Nehab, Pedro V. Sander, Michael
Wimmer, and Elmar Eisemann. 2011. A Survey on Temporal Coherence Methods in
Real-Time Rendering. In EUROGRAPHICS 2011 State of the Art Reports. 101–126.

Shu Shi and Cheng-Hsin Hsu. 2015. A Survey of Interactive Remote Rendering Systems.
ACM Comput. Surv. 47, 4, Article 57 (May 2015), 29 pages.

Sudipta N. Sinha, Johannes Kopf, Michael Goesele, Daniel Scharstein, and Richard
Szeliski. 2012. Image-based rendering for scenes with reflections. ACM TOG 31, 4
(2012), 1–10.

Pitchaya Sitthi-amorn, Jason Lawrence, Lei Yang, Pedro V. Sander, Diego Nehab, and
Jiahe Xi. 2008. Automated Reprojection-based Pixel Shader Optimization. ACM
TOG 27, 5, Article 127 (Dec. 2008), 11 pages.

Seth Teller and Pat Hanrahan. 1993. Global Visibility Algorithms for Illumination
Computations. In Proc. SIGGRAPH (SIGGRAPH ’93). 239–246.

Seth J Teller and Carlo H Séquin. 1991. Visibility preprocessing for interactive walk-
throughs. In ACM SIGGRAPH Computer Graphics, Vol. 25. 61–70.

George Wolberg. 1998. Image morphing: a survey. The Visual Computer 14, 8-9 (1998),
360–372.

Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. 2000. Visibility preprocessing
with occluder fusion for urban walkthroughs. In Rendering Techniques 2000. 71–82.

P. Wonka, M. Wimmer, and F. X. Sillion. 2001. Instant visibility. CGF 20, 3 (9 2001).
Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz. 2010. Real-time

Concurrent Linked List Construction on the GPU. In Proc. EGSR (EGSR’10). 1297–
1304.

Lei Yang, Yu-Chiu Tse, Pedro V. Sander, Jason Lawrence, Diego Nehab, Hugues Hoppe,
and Clara L. Wilkins. 2011. Image-based Bidirectional Scene Reprojection. ACM
TOG 30, 6, Article 150 (Dec. 2011), 10 pages.

Hansong Zhang, Dinesh Manocha, Tom Hudson, and Kenneth E. Hoff. 1997. Visibility
culling using hierarchical occlusion maps. ACM, 77–88.

Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech
Jarosz, Olga Sorkine-hornung, and Alexander Sorkine-hornung. 2015. Path-space
Motion Estimation and Decomposition for Robust Animation Filtering. Egsr 2015
34, 4 (2015), 12.

ACM Trans. Graph., Vol. 38, No. 6, Article 231. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related work
	2.1 Visibility Computations
	2.2 Other Components

	3 Camera Offset Space
	3.1 Offset Space for a Single Triangle
	3.2 Offset Space for a Point
	3.3 Camera Offset Space Considerations
	3.4 Visibility for Pairs of Triangles

	4 Potentially Visible Set and Rasterization
	4.1 3D Movement and Camera Rotation
	4.2 Fragment Lists and Sorting
	4.3 Occluder Fusion
	4.4 Progressive Visibility Resolution
	4.5 Between Sample Locations

	5 Implementation
	6 Results
	6.1 Inner workings
	6.2 Performance and Comparison

	7 Conclusion and future work
	Acknowledgments
	References

