
Autonomous, Independent Management of Dynamic
Graphs on GPUs

Martin Winter
Graz University of Technology

Graz, Austria
martin.winter@icg.tugraz.at

Rhaleb Zayer
Max Planck Institute for Informatics

Saarland Informatics Campus
Saarbrücken, Germany
rzayer@mpi-inf.mpg.de

Markus Steinberger
Graz University of Technology

Graz, Austria
steinberger@icg.tugraz.at

Abstract—In this paper, we present a new, dynamic graph
data structure, built to deliver high update rates while keeping a
low memory footprint using autonomous memory management
directly on the GPU. By transferring the memory management
to the GPU, efficient updating of the graph structure and
fast initialization times are enabled as no additional memory
allocation calls or reallocation procedures are necessary since
they are handled directly on the device. In comparison to
previous work, this optimized approach allows for significantly
lower initialization times (up to 300x faster) and much higher
update rates for significant changes to the graph structure and
equal rates for small changes. The framework provides different
update implementations tailored specifically to different graph
properties, enabling over 100 million of updates per second and
keeping tens of millions of vertices and hundreds of millions
of edges in memory without transferring data back and forth
between device and host.

I. INTRODUCTION

In today’s world, large, ever-changing data structures are
in common use and dynamic graphs are used in many
application domains, ranging from communication networks,
to social media networks, to intelligence data. And as graphics
processing units (GPUs) become ever more ubiquitous and
comparatively inexpensive, massively parallel compute devices
are available to deal with problems posed in such large-
scale domains. Currently, there are many static graph libraries
and algorithms available that take advantage of this massive
parallelism. However, most deal only with the static use case,
as performance on the GPU is predicated on being able to
managed thread divergence, memory locality and optimal work
distribution, which becomes increasingly difficult in a dynamic
setting, where the memory layout is constantly changing.

In this paper, we present an agile and fast dynamic graph
solution on the GPU with low memory requirements and
autonomous memory management. Our implementation uses
CUDA [1], but could also be implemented using OpenCL [2].
The proposed solution is built from the ground up to achieve
maximum performance on the GPU, allocating the free device
memory upfront and managing all memory directly on the GPU.
This alleviates individual reallocation calls for dynamic graph
updates and allows the framework to perform edge insertions
and deletions with a single kernel call respectively. The host
only provides update data to the framework, which performs
the update independently on the GPU.

An added benefit of this methodology, in addition to
alleviating additional management interventions from the host,
is the fact that users do not need to care about memory
management themselves. The system provides not only a
mechanism to hold and update the graph data structure on
the GPU, but also the ability to place temporary data (e.g. edge
updates, algorithmic data) on the device without the need to
allocate or free this memory segment later on.

The general memory layout is tailored to the architecture of
the GPU, providing a management segment at the beginning
of the device memory that allows to perform locking on a
per-vertex basis if so required. The adjacency per vertex itself
is stored in a combination of an edge block array and an edge
block list, allowing for efficient memory access within a block
but keeping the flexibility to resize the adjacency with little
overhead during reallocation. The framework provides three
different semantic modes for graphs, allowing to include weight,
type and timestamp information, which provide additional
expressiveness at the cost of higher memory requirements.

Depending on graph properties (like the average degree per
vertex), different update implementations are provided that are
optimized for the different properties. If the average size of
an adjacency per vertex is small, a different update algorithm
performs better when compared to large adjacencies. These
optimizations are turned on by default, but can also be adjusted
by the user depending on the use case.

II. RELATED WORK

A. Static Graph Algorithms on the GPU

There are a variety of static graph data structures available
on the GPU, ranging from Gunrock [3] to nvGraph [4],
BlazeGraph [5], GasCL [6] and BelRed [7]. nvGraph [4]
offers implementations of page rank, single source shortest
path as well as single source widest path on the GPU and is
freely available as part of the CUDA toolkit. Gunrock [3] is
a CUDA library for graph processing using highly optimized
operators for graph traversal while achieving a balance between
performance and applicability to a wide range of problems.
BlazeGraph [5] offers a high-performance graph database,
using its own domain-specific language, DASL, to implement
advanced analytics with high-level functionality.

Fig. 1. Visualization of the device memory layout as managed by the memory manager

B. STINGER

Spatio-Temporal Interaction Networks and Graphs Extensible
Representation (STINGER) [8] is a high performance data
structure designed for efficient handling of dynamic graphs. It
uses a blocked linked list approach to store the adjacency data
per vertex. In its advancement, GTSTINGER [9], an internal
memory manager is used for allocating such edge blocks to the
individual vertices. GTSTINGER shows that high update rates
are possible, outperforming several leading graph databases,
including shared and distributed-memory based approaches.

C. cuSTINGER

cuSTINGER [10] is a new graph data structure focussing
on streaming graphs and represents a GPU implementation
of STINGER. They provide different meta-data modes for
edges and are capable of high update rates by addressing
cuSTINGER addressess the key issues of the STINGER
data structure on the GPU, switching from edge block lists
to edge block arrays, interleaving the vertex management
data and allocating individual edge block arrays as a whole.
However, the restrictions of the STINGER data structure do
not fit well on the GPU, as the management data structures
are unnecessarily large and GPU utilization depends on the
average size of the adjacency per vertex. For small to medium
sized adjacencies (less than 50 vertices per adjacency), this
leads to a unnecessarily large number of stalling threads per
update. Initializing the data structure is performed from the host
and updates hit a bottleneck once reallocations are necessary.
cuSTINGER tries to deal with this issue by over-allocating
50% more memory per adjacency, which helps in the beginning
or for small update batches, but hampers performance especially
in continuous mode or for large update batches Additionally,
this places tighter restrictions on the size of graphs, as this
over-allocation becomes significant for larger graphs.

III. AIMGRAPH

In the following section we sketch the design and general
idea behind aimGraph (autonomous, independent management
of dynamic Graphs on the GPU) and focus on the initial
memory setup and layout, the update implementations as well
as performance relevant optimizations. This section is followed
by a comparison to cuSTINGER and a look at performance
differences.

A. Memory Layout

aimGraph initializes the system with a single GPU memory
allocation, assigning as much memory as is available on
the device to the framework. All following allocation calls
are handled internally by requesting memory from a simple

memory manager. This simple memory manager is initialized
from the CPU (setting up the edge mode, the block size, kernel
launch parameters) and then placed at the beginning of the
large block of memory previously allocated on the device. It
holds a pointer to the beginning and end of the allocated device
memory and also stores all the necessary management data.
Using this autonomous memory management approach, the
framework can facilitate all dynamic memory needs directly
on the GPU and significantly reduce the run time overhead by
avoiding individual allocation calls from the host.

Our memory manager follows a similar approach as tradi-
tional memory management in CPU C/C++ program. Static
data is placed at the bottom, the dynamic heap area is placed
right after the static data, while the temporary data on the stack
grows from the top. We consider these three regions in our
memory manager on the GPU.

1) Static data: Similarly to cuSTINGER, the number of
vertices is considered static in our current implementation.
Adding or deleting vertices from the graph is not supported,
hence the size of the static data segment is known at the
time of initialization. As previously mentioned, right at the
start of the application, the memory manager and after that
vertex management data structures are placed in device memory.
The management data is set up as a structure of arrays, each
array the size of numberV ertices · sizeof(parameter). The
parameters in question are

• memindex: Holds the block index of a dynamic edge
block, where the adjacency data starts

• neighbours: Holds the number of neighbours in the
adjacency

• capacity: Holds the maximum number of neighbours in
the adjacency with the current block allocation

• weight: A weight can be assigned to each vertex, optional
parameter

• type: A type can be assigned to each vertex, optional
parameter

• lock: Algorithms can restrict access to individual vertices
using this lock

All individual arrays are placed memory aligned, each at least
the size of a multiple of the general GPU cacheline size of 128
bytes, each vertex hence requires at least 6 ·4 bytes = 24 bytes.

2) Dynamic data: The data after the static data segment is
managed in blocks, the block size depends on the application
and the size of the edge data. Each block stores adjacency data
and uses the last 4 bytes to indicate the location of the following
block. For a simple adjacency storing just the destination vertex,
64 bytes suffices, for semantic graphs, the block size is larger to
accommodate more vertices per block. Additionally, different
update mechanisms profit from different memory block sizes,

depending on the update strategy and the average size of the
adjacency per vertex an optimal block size for the given graph
is chosen.

In the initialization step, even this data can be set up
with maximum parallelism using an exclusive prefix scan to
determine the memory requirements for each adjacency list
in a pre-computation step. The last element in an edge block
is always an index to the next edge block. This makes this
approach a combination of a linked list and an adjacency array
and allows for memory locality for vertices within an array. At
the same time, this strategy avoids reallocation of the whole
block if augmentation is required, as another block can be
allocated by simply updating the index at the end of the last
block. This approach also leaves the possibility to switch to
more sophisticated memory management in the future.

3) Temporary data: In the initialization phase, but also
for updating the graph and algorithms running on the graph,
additional, temporary data may be required. This can, e.g., be
edge updates (consisting of source and destination vertex data)
or an array holding the triangle count per vertex to calculate
the overall triangle count within a graph structure.

This data is managed like a stack. The memory manager
holds a stack pointer pointing to the end of the allocated
memory and can deal out shares of this memory to algorithms
or for pushing updates to the graph structure. This way the
whole device memory can be managed without considering a
trade-off between the managed memory portion of the device
memory and the temporary data needed, the memory manager
just has to check if temporary data does not protrude into the
dynamic data segment.

B. Initialization

At the start of the application, a graph is parsed into an
intermediary CSR (Compressed Sparse Row) format and in
the beginning, a preprocessing kernel is started to calculate
the memory requirements per vertex, in detail computing the
number of neighbours and from that the capacity and
block requirements per vertex in parallel. Using the
block requirements and an exclusive prefix sum scan,
the overall memory offsets for all individual edge block lists
can be computed.

Using all this information, the initialization kernel can be
run completely in parallel without regard for locking, while
the CSR format is transferred into the aimGraph format, only
a single instruction is performed by a single (the last) thread,
as this one can set the next_free_block_index in the
memory manager, which is required for dynamic memory
allocation for edge updates.

C. Edge Types

aimGraph supports three different edge types:
• Simple: This mode stores the bare graph structure using

just the destination vertex in the edge data array
• Weights: This mode adds the support for weights for both

vertices and edges to the simple mode

• Semantic: Additionally to weights, this mode adds support
for type information for both vertices and edges and also
two timestamps per edge, which increases the size required
per edge significantly

This variety of options is implemented using templated classes
and methods, as most functionality is independent of the
concrete representation of the edges themselves, just the
modification functionality is realized via overloaded functions.
Depending on the use case, one of these more advanced modes
can be selected at the cost of an increased memory footprint,
choosing a larger sized edge type also increases the basic block
size to accommodate a larger number of edges per block.

Algorithm 1: Edge insertion using locking
Data: edge update batch
Result: Edges inserted into graph
Edge updates put onto stack;
while lock acquired do

read neighbours & capacity;
for vertices v in adjacency do

if v == DELETIONMARKER || index ≥
neighbours then

remember index;
break;

if v == edge update then
found duplicate, ignore;
break;

advance in EdgeBlockList;

if !edgeInserted && !duplicateFound then
get memBlock from memManager;
update adjacency, index, capacity & neighbours;

else if !duplicateFound then
insert element at index;

release lock;

D. Edge Insertion

Edge updates in the current setup require a single lock
per vertex to combat concurrent read/writes to the adjacency,
neighbours and capacity as shown in algorithm 1. Access to
the memory manager on the other hand simply requires atomic
memory access to get a new block, if the current capacity
cannot accommodate the new update.

This results in a high update rate, if the edge updates do not
particularly favor a small set of vertices over the majority. For
edge updates that are close to a uniform random distribution,
inserting 1.000.000 edges can be achieved in a few milliseconds.
Depending on the average size of the adjacency, even when
accessing the memory manager heavily to adjust the size of
individual edge block lists.

We provide two implementations, optimized for different
adjacency list counts. The first, which is the standard insertion
mode, is shown in listing 1. It completes each individual update

using a single thread. This approach is especially fast for small
to medium sized adjacency lists (less than 50 vertices).

If the average size per adjacency grows larger, the traversal
of the graph structure becomes the bottleneck. Thus, for larger
adjacency list sizes, we use an entire warp (32 threads) for
the update. In this case the for-Loop reduces to a loop over
blocks and the memory access pattern within blocks can be
optimized to requesting a full cacheline per warp at once.

E. Edge Deletion

Edge Deletion works in a similar manner to edge insertion,
the major difference results in the fact that there is no need
to access the memory manager, as no new memory will be
required. Additionally, we do not return empty blocks to the
memory manager, but simply reuse them when edges are
inserted for the same node again. In this way, we can avoid
access to the memory manager completely during deletion.

As with the insertion process, two different implementations
are provided, one launching a single thread per update and
the other launching a full warp per update, depending on the
average size of the adjacency. In the following, we show the
deletion process for the standard launch. When launching a
full warp per update, the for-Loop is again reduced and leads
to better memory locality as a whole cacheline is fetched by
the warp.

Algorithm 2: Edge deletion without locking
Data: edge update batch
Result: Edges deleted from graph
Edge updates put onto stack;
read capacity;
for vertices v in adjacency do

if v == edge update then
atomically update Adjacency & neighbours;
one thread decreases neighbours;
break;

advance in EdgeBlockList;

IV. COMPARISON TO CUSTINGER

This section provides a comparison between aimGraph and
cuSTINGER by looking at the respective memory footprints
and composition, as well as the time spent initializing and
updating the graph structure and is followed by an evaluation
of the performance differences.

A. Memory footprint

One of the biggest differences stems from the way memory
allocation is performed in general, cuSTINGER performs
individual calls to cudaMalloc() from the CPU to allocate the
management data and all individual edge blocks. Especially for
graphs with more than a million vertices this is a significant
overhead, compared to the single allocation in aimGraph.

Another big difference lies in the memory footprint.
cuSTINGER uses pointers to (a) locate attributes, (b) to point

to individual edge blocks, (c) to point to data members within
an edge block (especially prevalent in semantic mode). This
increases the size of the management data set and also requires
a full block (of 64 bytes) just to hold member pointers.

aimGraph on the other hand uses an indexing system
(reducing the size per pointer/index from 8 bytes to 4 bytes),
but also eliminates the member pointers and additional attribute
pointers by combining an efficient indexing scheme and
reinterpreting memory on the fly using casts to achieve the
same functionality at a fraction of the memory.

B. Initialization

As previously mentioned, aimGraph performs a single
device memory allocation and can perform the whole setup in
parallel on the GPU with little overhead. Compared to that,
cuSTINGER needs to allocate each individual edge block list
from the CPU, also performing the pre-computation entirely
on the CPU and only the actual setup of the data structure
occurs on the GPU. However, as there is no offset-indexing
scheme, even this launch cannot utilize the GPU to its full
potential, leading to an enormous performance difference in
the initialization stage.

C. Updates

Here once again, the different strategy in allocating memory
pays off for aimGraph, as updates can be achieved in a single
kernel launch with a single lock per vertex when inserting
edges and even without a lock in the deletion process.

cuSTINGER, on the other hand, launches at least one
kernel, which cannot utilize the whole GPU due to the lack
of locking, but also incurs a heavy penalty if duplicates are
present or reallocation is required. In this case, new space must
be allocated using cudaMalloc() and the whole edge block list
of the given vertex needs to copied over. In the worst case
5 kernel launches are required to deal with all eventualities,
leading to significantly lower update rates.

cuSTINGER holds a slight edge in case no duplicates are
in the batch, no reallocation is necessary and the average
size of an adjacency is large (greater than 50), as only few
operations are performed. However, in these cases there is a
chance to produce invalid graphs, as there is no locking or
contention resolution mechanism in place. Depending on the
actual behavior of the hardware thread scheduler this problem
may show up more or less often.

V. PERFORMANCE

The performance measurements were conducted using a
NVIDIA GTX 780 GPU (3 GB V-RAM), an Intel Core i7-
3770K using 16 GB of DDR3-1600 RAM. The GTX780 is
a Kepler based card with CC 3.5, and equipped with 2496
CUDA Cores, 12 SMs and 192 TMUs per SM.

Although this is considered consumer hardware, the goal is
to show differences between aimGraph and cuSTINGER.
Performance on more powerful professional equipment is
expected to be even higher. The graphs used were taken from
the 10th DIMACS Graph Implementation Challenge [11] and

a selection used for performance testing is highlighted in table
I. Both frameworks use the same testing methodology, starting
with initialization, followed by the generation of random edge
updates, which were subsequently added to the graph and
then removed again. This is done 10 times and the results are
averaged to produce the overall results. Only the calls to the
initialization and update functions were measured. This whole
process is repeated 10 times and averaged again, hence the
performance numbers shown display the average time of 10
rounds of initialization and 100 rounds of edge insertions and
deletions respectively.

Name Network Type |V| |E|

Luxembourg Road 115k 239k
coAuthorsDBLP Citation 299k 1.95M

ldoor Matrix 952k 45.57M
audikw1 Matrix 943k 76.71M

Germany Road 12M 24.74M
nlpkkt160 Matrix 8M 221.17M

TABLE I
GRAPHS USED FOR PERFORMANCE MEASUREMENT

A. Initialization

As shown in table II, the different memory setup procedure
pays off the most in the initialization step, the highest advantage
is achieved when processing a high number of vertices with a
comparatively low number of edges. In this case, aimGraph
is nearly 300 times faster. Even for a low number of vertices
with a high degree the speed up achieved still reaches double
digits. This can be attributed to the fact, that aimGraph works
autonomously on the GPU and can parallelize the setup process.
In contrast, cuSTINGER performs its setup process from the
host with individual initialization calls per vertex, calculating
memory requirements and allocating memory from the host
directly.

Additionally, as aimGraph has a significantly lower memory
footprint. Thus, larger graphs can be kept in memory compared
to cuSTINGER as can be seen for the sparse Matrix network
nlpkkt160.

Name Initialization Initialization
(ms) (ms)

aimGraph cuSTINGER

Luxembourg 3.13 110.5
coAuthorsDBLP 6.687 289.6

ldoor 53.704 1 053.2
audikw1 86.713 1 108.6

Germany 101.68 14 010.7
nlpkkt160 228.13 out of memory

TABLE II
INITIALIZATION TIME IN ms FOR AIMGRAPH AND CUSTINGER

B. Edge insertion

The first three cases in figure 2 show where aimGraph has a
clear performance advantage. This is the case if the degree per
vertex is small, as in those cases the over-allocation strategy of

0

50

100

150

200

250

Luxembourg Germany coAuthorsDBLP ldoor audikw1

m
s

Graphs

Edge Inser!on 100.000 | 1.000.000

cuSTINGER (0.1M) aimGraph (0.1M) cuSTINGER (1M) aimGraph (1M)

Fig. 2. Performance measurement for edge insertions, using a batch size of
100.000 and 1.000.000

cuSTINGER does not provide enough space for the insertion
operations and both frameworks have to reallocate which is
much faster using aimGraph, as everything is done on the
GPU in one kernel. cuSTINGER has to reallocate from the
CPU and also copy over entire edge blocks.

cuSTINGER has an advantage due to their over allocation
policy. cuSTINGER allocates 50% more to reduce the need
for reallocation later on, if there is a comparatively low number
of vertices compared to the number of edges (as seen with
the sparse matrices). In these cases, cuSTINGER achieves
the updates in less time than aimGraph, as we actually have
to perform memory allocations, which involve more complex
traversal mechanisms and locking.

Additionally, as cuSTINGER does not use any form of
race condition avoidance, there might arise some cases which
result in an invalid graph structure. Depending on GPU
scheduling, duplicates within batches are not detected and
remain in the graph. The behavior of aimGraph is independent
of scheduling, and keeps a more compact memory layout.
Although, we employ correctness guaranties and keep memory
requirements significantly lower, cuSTINGER only shows a
slight performance advantage.

Another factor, which becomes performance relevant, is the
difference in adjacency traversal. Due to the more modular
structure of aimGraph, the traversal of individual edge lists
takes longer compared to the array traversal of cuSTINGER,
as the indexing scheme behind connecting multiple blocks into
a contiguous list requires extra cycles.

For testing purposes, turning off/down the memory over-
allocation of cuSTINGER decreases performance up to a factor
of 100 or changing the update strategy by first inserting 10
batches of updates and then removing them again also worsens

0

5

10

15

20

25

30

35

Luxembourg Germany coAuthorsDBLP ldoor audikw1

m
s

Graphs

Edge Dele!on 100.000 | 1.000.000

cuSTINGER (0.1M) aimGraph (0.1M) cuSTINGER (1M) aimGraph (1M)

Fig. 3. Performance measurement for edge deletions, using batch size 100.000
and 1.000.000

performance for cuSTINGER significantly, while aimGraph
does not see a major effect on its performance. Overall, it
can be noted that cuSTINGER only performs well when it
works within its overallocation boundaries and for larger sized
adjacencies. Otherwise its performance significantly drops.

C. Edge Deletion

In case of deletions, the performance difference is slightly
less pronounced compared to the insertion process as can be
seen in figure 3. This is due to the fact that deletions always
work without rearranging the general memory layout and also
there exists no possibility of adding/removing duplicates.

aimGraph uses variant 1 of the deletion procedures for
the first four graphs (one thread per update), as the average
adjacency is comparatively small to medium sized (less than
50 vertices per vertex on average). Under these circumstances
adjacency traversal is less important compared to stalling
threads. The performance benefit is therefore greatest for very
small adjacencies per vertex and becomes less prominent for
larger adjacencies.

The last case uses variant 2, launching warp-sized blocks, as
in those cases the adjacency traversal is crucial to performance,
and once again performance is about 2× faster compared to
cuSTINGER for the tested graphs. The main difference to
cuSTINGER is the single kernel launch (compared to two
launches for cuSTINGER) and the more efficient duplicate
checking.

VI. CONCLUSION

aimGraph is a memory-efficient streaming graph solution
on the GPU that enables very high update rates without the
need to transfer the graph data structure to and from the host.
This solution is purpose-built for the GPU, keeping memory
requirements low by using an indexing structure instead of
pointers and managing the device memory on the device
autonomously, without the need for copying and allocating
new blocks from the host. In this way, updating the graph
structure can be achieved with a single kernel call respectively
and allows for concurrent initialization and updates.

The current implementation includes support for different
semantic modes (including simple, weighted and semantic
graphs) and offers developers different updating strategies,
which can be selected for specific workloads for optimal
performance. Also different verification methods are present to
test and verify new features and algorithms. Even on consumer-
level GPUs (NVIDIA GTX 780 with 3GB VRAM), the
framework can hold tens of millions of vertices and hundreds
of millions of edges in memory (depending on the semantic
mode) and is also able to process 20 - 100 million insertions
per second and between 50 - 150 million deletions per second.

Overall, aimGraph offers an efficient and fast dynamic
graph implementation with low memory footprint and au-
tonomous memory management, allowing for different update
mechanisms tailored to different graph properties.

VII. FUTURE WORK

In its current form, aimGraph offers a streaming graph
solution, capable of high update rates while keeping the memory
requirements as low as possible. To further update and expand
the capabilities, the objective is to assess more advanced
memory management techniques. This could be achieved by a
queueing approach to have a more modular solution and also
save space, especially when using the framework in continuous
mode, the current indexing structure and mixed approach should
translate well to this more advanced approach.
Furthermore, we would like to investigate the use of a
mega kernel approach, launching just a single kernel and
distributing the resources on the fly, eliminating separate kernel
launches from the host all together. This would also incorporate
the possibility of updating the graph structure and running
algorithms simultaneously.
Currently, the testing procedure focusses mainly on initializing
and updating the graph structure and deriving performance
metrics from this data, in the future the objective would be
to implement different graph algorithms, including triangle
counting [12], [13], connected components [14], single-source
shortest path [15], betweeness centrality for static graphs [16],
betweeness centrality for dynamics graphs [17] and community
detection [18].

ACKNOWLEDGMENTS

This research was supported by the DFG grant STE 2565/1-1,
the Austrian Science Fund (FWF) I 3007 and the Max Planck
Center for Visual Computing and Communication.

REFERENCES

[1] “NVIDIA CUDA programming guide,” 2017. [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[2] “Opencl - the open standard for parallel programming of heterogeneous
systems,” 2017. [Online]. Available: https://www.khronos.org/opencl/

[3] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“GunRock: A high-performance graph processing library on the GPU,”
in ACM SIGPLAN Notices, vol. 50, 2015.

[4] “nvgraph,” 2016. [Online]. Available:
https://developer.nvidia.com/nvgraph

[5] “Blazegraph,” 2017. [Online]. Available: https://www.blazegraph.com/
[6] S. Che, “GASCL: A vertex-centric graph model for GPUs,” in IEEE

High Performance Embedded Computing Workshop (HPEC), 2014.
[7] S. Che, B. M. Beckmann, and S. K. Reinhardt, “BelRed: Constructing

gpgpu graph applications with software building blocks,” in IEEE High
Performance Embedded Computing (HPEC), 2014.

[8] D. Bader, J. Berry, A. Amos-Binks, D. Chavarria-Miranda, C. Hastings,
K. Madduri, and S. Poulos, “STINGER: Spatio-temporal interaction
networks and graphs (STING) extensible representation,” in Tech. Rep.
Georgia Institute of Technology, 2009.

[9] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “STINGER: High
performance data structure for streaming graphs,” in IEEE High Perfor-
mance Extreme Computing Conference (HPEC). Georgia Institute of
Technology, 2012.

[10] O. Green and D. Bader, “cuSTINGER: Supporting dynamic graph
algorithms for GPUs,” in IEEE High Performance Extreme Computing
Conference (HPEC). Georgia Institute of Technology, 2016.

[11] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “Graph
partitioning and graph clustering. 10th dimacs implementation challenge
workshop,” in ser. Contemporary Mathematics, no. 588, 2013.

[12] O. Green, P. Yalamanchili, and L. Munguia, “Fast triangle counting on the
GPU,” in IEEE Fourth Workshop on Irregular Applications: Architectures
and Algorithms, 2014.

[13] A. Polak, “Counting triangles in large graphs on GPU,” in arXiv preprint,
2015.

[14] J. Soman, K. Kishore, and P. Narayanan, “A fast gpu algorithm for graph
connectivity,” 2010.

[15] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel GPU methods for single-source shortest paths,” in 28th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2014.

[16] A. E. Sariyüce, K. Kaya, E. Saule, and . V. Catalyürek, “Betweenness
centrality on GPUs and heterogeneous architectures,” in 6th Workshop
on General Purpose Processor Using Graphis Processing Units, 2013.

[17] A. McLaughlin and D. Bader, “Revisiting edge and node parallelism
for dynamic GPU graph analytics,” in IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2014.

[18] J. Soman and A. Narang, “Fast community detection algorithm with
GPUs and multicore architectures,” in IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2011.

